## N4

## Engineering Science

## ALFRED MWAMUKA <br> LOUIS OOSTHUIZEN

```
4th Floor, Auto Atlantic, Corner Hertzog Boulevard and Heerengracht Boulevard,
Cape Town, South Africa
za.pearson.com
Copyright © Pearson South Africa (Pty) Ltd 2022
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the copyright holder.
```


## First published 2022

```
ISBN: 9781485720706
epdf: 9781485720935
Publisher: Lloyd Stuurman
Managing Editor: Wasema Mathews
Editor: Louis Botes
Proofreader: TBC
Cover artwork: TBC
Book design: Pearson Media Hub
Cover design: Pearson Media Hub
Typesetting: Thea Brits
Photo permissions:
Cover: Maksym Dykha/Shutterstock
p. 79: Jim Parkin. Shutterstock; p. 114: Andriy Dovzhykov/123rf; p. 160: murugesan sundaram/123rf; p. 172: Business stock. Shutterstock
```


## Contents

Module 1: Kinematics ..... 1
Unit 1: Constant linear motion and relative velocity ..... 2
Introduction ..... 2
Speed and velocity ..... 2
Relative velocity ..... 2
Relative velocity along non-parallel lines ..... 7
Unit 2: Resulting velocity ..... 14
Introduction ..... 14
Resulting velocity ..... 14
How to calculate resultant velocity ..... 14
Unit 3: Projectiles ..... 19
Introduction ..... 19
The motion of a projectile ..... 19
Projectiles launched at an angle ..... 20
Motion of a ball falling from a cliff ..... 21
Horizontal displacement of a projectile ..... 22
Module summary ..... 31
Module 1 Checklist ..... 31
Exam practice questions ..... 32
Module 2: Angular motion ..... 33
Unit 1: Angular displacement ..... 34
Introduction ..... 34
Angular displacement ..... 34
Angular (rotational) velocity ..... 36
Angular acceleration ..... 38
Linear acceleration ..... 39
Total distance covered by a body ..... 40
The relationship between linear and angular motion ..... 41
The relationship between angular velocity and time ..... 42
Unit 2: Torque, work done and power ..... 45
Introduction ..... 45
Torque ..... 45
Torque and moment of inertia ..... 47
Module summary ..... 49
Module 2 Checklist ..... 49
Exam practice questions ..... 50
Module 3: Dynamics ..... 51
Unit 1: Newton's three laws of motion ..... 52
Introduction ..... 52
Newton's three laws of motion ..... 52
Application of Newton's second law of motion. ..... 53
Free-body diagrams ..... 56
Tractive resistance ..... 61
Unit 2: Kinetic and potential energy ..... 66
Introduction ..... 66
Kinetic energy ..... 66
Potential energy ..... 68
Unit 3: Conservation of energy ..... 71
Introduction ..... 71
Conservation law of energy ..... 71
Illustration of the conservation law of energy ..... 71
Module summary ..... 73
Module 2 Checklist ..... 74
Exam practice questions ..... 74
Module 4: Statics ..... 76
Unit 1: Simply supported beams and cantilevers with point loads and uniformly distributed load ..... 77
Introduction ..... 77
Moment of a force ..... 77
The law of moments ..... 78
Simply supported beams ..... 79
Shear force and bending moment diagrams ..... 82
Cantilevers ..... 90
Draw a loaded beam from a shear force diagram ..... 93
Unit 2: Centre of gravity and centroids ..... 97
Introduction ..... 97
The concept of equilibrium ..... 97
Centre of gravity ..... 98
How to calculate the centre of gravity for different shapes ..... 99
A centroid ..... 101
Module summary ..... 109
Module 4 Checklist ..... 110
Exam practice questions ..... 110
Module 5: Hydraulics ..... 113
Unit 1: Hydraulic presses ..... 114
Introduction ..... 114
The functions of a hydraulic press ..... 114
The operation of a hydraulic press ..... 115
Unit 2: Hydraulic pumps ..... 123
Introduction ..... 123
Types of hydraulic pumps ..... 123
Reciprocating pump delivery. ..... 124
Pump pressure ..... 125
Unit 3: Hydraulic accumulators ..... 129
Introduction ..... 129
The functions of an accumulator ..... 129
Basic types of accumulators ..... 129
Pressure and volume supplied by an accumulator ..... 131
Module summary ..... 134
Module 5 Checklist ..... 135
Exam practice questions ..... 136
Module 6: Stress, strain and Young's modulus ..... 138
Unit 1: Types of stresses ..... 139
Introduction ..... 139
What is stress in engineering? ..... 139
Types of stresses ..... 140
Strain in a material ..... 140
Calculations on stress and strain ..... 141
The difference between single and double shear ..... 143
Stress, strain and Young's modulus ..... 145
Unit 2: Young's modulus ..... 148
Introduction ..... 148
Hooke's law and Young's modulus of elasticity ..... 148
How to determine Young's modulus for elasticity ..... 149
Stress and strain graphs ..... 150
Module summary ..... 154
Module 6 Checklist ..... 154
Exam practice questions ..... 155
Module 7: Heat ..... 157
Unit 1: Volumetric change in solids ..... 159
Introduction ..... 159
Heat and temperature ..... 159
Thermal expansion/contraction in matter ..... 159
Unit 2: Volumetric change in liquids ..... 165
Introduction ..... 165
The anomaly in the expansion of water ..... 165
The volumetric thermal expansion of fluids ..... 166
Overflow in a container ..... 167
Unit 3: Volumetric change in gasses ..... 169
Introduction ..... 169
Characteristic gas laws with relevant formulae ..... 169
Boyle's law ..... 169
Charles's law ..... 171
Gay-Lussac's law ..... 172
The combined gas laws ..... 174
Unit 4: Gas processes ..... 176
Introduction ..... 176
The basic gas processes ..... 176
Module summary ..... 183
Module 7 Checklist ..... 184
Exam practice questions ..... 185
Glossary ..... 186

## Module 1

## Kinematics

## What is covered?

Kinematics is a branch of physics that falls under classical mechanics and deals with the study of the motion of a system of bodies or objects without considering forces and their effects on the movement or motion of the bodies. The module covers how to solve problems analytically to practical situations where two objects or bodies move horizontally at constant velocity in different directions. The module also shows how to determine the resultant velocity, shortest distance, time intersection, overtaking and actual velocity. The module gives calculations dealing with projectiles that are launched horizontally from a certain vertical height or launched at an angle from the horizontal landing on the same horizontal plane. Finally, the module covers how to calculate the velocity of projection, angle of projection, height and velocity at any part of the projectile path.

## Subject Outcomes

After studying this module, you should be able to:
Unit 1

- Solve problems dealing with constant linear motion analytically (Pythagoras or the sine and cosine rules)
- Determine the relative velocity, shortest distance, time to intercept and actual velocity.

Unit 2

- Calculate the resulting velocity and direction of a maximum of two vectors
- Calculate the time taken to reach a certain destination.

Unit 3

- Do calculations dealing with projectiles that are launched horizontally from a certain vertical height or launched at an angle from the horizontal landing on the same horizontal plane
- Calculate the maximum height reached by an object as well as the time of flight and range
- Calculate the height and velocity at any part of the projectile path
- Calculate the velocity of projection
- Calculate the angle of projection.


# Unit 1: Constant linear motion and relative velocity 

## LEARNING OUTCOMES

Solve problems dealing with constant linear motion analytically (Pythagoras or the sine and cosine rules).

- Determine the relative velocity, shortest distance, time to intercept and actual velocity.


## Introduction

This unit deals with calculations of constant linear motion analytically using Pythagoras or the sine or cosine rules. The unit also shows how to determine relative velocity along parallel and non-parallel lines using the analytical method.

## 1. Speed and velocity

It is important to understand the difference between speed and velocity. Speed is the time rate at which an object moves along a path, while velocity is the rate and direction of an object's movement. For example, $100 \mathrm{~km} / \mathrm{hr}$ describes the speed at which a car is travelling, while $100 \mathrm{~km} / \mathrm{hr}$ west describes the velocity at which it is travelling.

## 2. Relative velocity

## Keywords

Speed: the time rate at which an object is moving along a path, e.g. $60 \mathrm{~km} / \mathrm{hr}$

Velocity: the rate and direction of an object's movement, e.g. 60 km/ hr west
Relative velocity: the velocity of an object relative to something else; the difference between two velocities

Relative velocity is defined as the velocity of an object relative to something else. It is also referred to as the difference between two velocities, for example, the velocity of an object minus the velocity of a frame of reference.

Let us consider a variable $V_{D E}$. This would mean the velocity of object D with respect to object $\mathrm{E} . \mathrm{D}$ is the object in focus and E is the frame of reference.

To calculate relative velocity $V_{D E}$, we use the following formula:

$$
V_{D E}=V_{D}-V_{E} \text {, where } V_{D E} \text { is the velocity of object } D \text { with respect to } E .
$$

We calculate relative velocity $R_{V}$ as follows:
$R_{V}=V_{o b j e c t}-V_{F R}$, where FR is the reference frame.
For example, a car is travelling at $100 \mathrm{~km} / \mathrm{hr}$ towards the east. If the car passes a boy standing still on the side of the road, it would appear to the boy that the car is moving at $100 \mathrm{~km} / \mathrm{hr}$.

## Worked example 1.1 Calculate the relative velocity of two objects moving in the same direction at different speeds

Two cars, D and E, are moving in the same direction at different speeds. Car D is travelling at $70 \mathrm{~km} / \mathrm{hr}$ in an easterly direction with respect to the earth and car E is moving at $80 \mathrm{~km} / \mathrm{hr}$ in the same direction.

1. Calculate the relative velocity of car E with respect to car D.
2. Calculate the relative velocity of car $D$ with respect to car $E$.

## Solution

1. Figure 1.1 shows how to calculate the relative velocity of car $E$ with respect to car D.


Figure 1.1 How to calculate the relative velocity of car E with respect to car D
Referring to Figure 1.1, relative velocity is calculated as follows:
$V_{E D}=V_{E}-V_{D}=80-70=10 \mathrm{~km} / \mathrm{hr}$
The relative velocity of car E with respect to car $D$ is $10 \mathrm{~km} / \mathrm{hr}$.
$V_{E D}=+10 \mathrm{~km} / \mathrm{hr}$
The diagram shows that car E is moving 10 km faster than car D since the two cars are moving in the same direction. So in one hour, car D will travel 70 km and car E will travel 80 km . Therefore, after an hour Car E will be 10 km ahead of car D. The driver of car D will see that driver in car E is moving +10 km away towards the right (in the diagram). Thus the relative velocity of $E$ with respect to $D$ is positive because car $E$ is moving in the same direction as car $D$, towards the right.
$V_{E D}=+10$.
2. Figure 1.2 shows how to calculate the relative velocity of car $D$ with respect to car $E$.


$$
V_{E D}=-10
$$

Figure 1.2 How to calculate the relative velocity of car D with respect to car E

We can calculate the relative velocity of car D with respect to car E as follows:

$$
\begin{aligned}
V_{D E} & =V_{D}-V_{E} \\
& =70-80 \\
& =-10 \mathrm{~km} / \mathrm{hr} .
\end{aligned}
$$

This means that car D is moving $10 \mathrm{~km} / \mathrm{hr}$ slower than car E .
To the driver of car E, it will appear that car D is moving to the left (in the diagram) with respect to E. Initially, the two cars were at the same location but now it appears that car D is moving towards the left or westwards. In one hour, car D will move 10 km towards the left with respect to car E and the displacement is -10 km . With respect to car E, car D will appear to be moving left and will, therefore, have a negative velocity.

Referring to the solution for both 1 and 2 of the example, we can see that relative velocity can be negative or positive.

## Worked example 1.2 Calculate the relative velocity of two objects moving in the same direction at the same speed

The two cars D and E in the previous worked example are now both travelling side by side at $120 \mathrm{~km} / \mathrm{hr}$ in a westerly direction on a double lane.

1. Calculate the relative velocity of car $E$ with respect to car $D$.
2. Calculate the relative velocity of car $D$ with respect to car $E$.

## Solution

1. Figure 1.3 shows how to calculate the relative velocity car E with respect to car D with both travelling in the same direction at the same speed.


$$
V_{E D}=V_{E}-V_{D}
$$

Figure 1.3 How to calculate the relative velocity car E with respect to car D
In Figure 1.3 above,

$$
\begin{aligned}
V_{E D} & =V_{E}-V_{D} \\
& =120-120 \\
& =0 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

2. Figure 1.4 shows how to calculate the relative velocity of car $D$ with respect to car E with both travelling in the same direction at the same speed.


$$
V_{D E}=V_{D}-V_{E}
$$

Figure 1.4 How to calculate the relative velocity car D with respect to car E
In Figure 1.4:

$$
\begin{aligned}
V_{E D} & =V_{E}-V_{D} \\
& =120-120 \\
& =0 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

By referring to the solution for Worked example 1.2, we can see that the relative velocity of two cars D and E is $0 \mathrm{~km} / \mathrm{hr}$. This means the two cars are not moving relative to each other, hence they will continue to move next to each other for the entire journey.

## Worked example 1.3 Calculate the relative velocity of two objects moving in different directions at different speeds

Two cars are travelling in opposite directions. Car D is travelling at $80 \mathrm{~km} / \mathrm{hr}$ towards the east and car E is travelling at $70 \mathrm{~km} / \mathrm{hr}$ in a westerly direction.

1. What is the relative velocity of car $D$ with respect to car $E$ ?
2. What is the relative velocity of car E with respect to car D?

## Solution

Figure 1.5 shows two cars travelling in opposite directions at different speeds.


Figure 1.5 Two cars travelling in opposite directions at different speeds
In Figure 1.5, the relative velocity of car D with respect to earth is $80 \mathrm{~km} / \mathrm{hr}$, while that of car E is $-70 \mathrm{~km} / \mathrm{hr}$.

1. We must establish if the velocity is positive or negative. In this case, the velocity of $V_{D E}$ is found to be positive.
$V_{D E}=V_{D}-V_{E}$
$=-80-(-70)$
$=80+70$
$=150 \mathrm{~km} / \mathrm{hr}$
2. In the second case, the velocity will be negative.

$$
\begin{aligned}
V_{E D} & =V_{E}-V_{D} \\
& =-70-(+80) \\
& =-70-80 \\
& =-150 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Worked example 1.4
Calculate the relative velocity of two objects moving in different directions and 200 km apart

The two cars D and E in Worked example 1.3 are now travelling in opposite directions and are 200 km apart. Car D is travelling at $80 \mathrm{~km} / \mathrm{hr}$ towards the east and car E is travelling at $70 \mathrm{~km} / \mathrm{hr}$ in a westerly direction. What will be the distance between the two cars after one hour?

## Solution

Figure 1.6 shows two cars travelling in opposite directions and 200 km apart.


Figure 1.6 How to calculate the relative velocity of two cars travelling in opposite directions when the distance between the two cars is known

Referring to Figure 1.6 above, it can be seen that in one hour car D will travel 80 km to the east and car E will travel 70 km towards the west. Every hour the velocity between the two cars will decrease by $150 \mathrm{~km} / \mathrm{hr}$.

The distance between the two cars after one hour is calculated as follows:

$$
\begin{aligned}
S & =200 \mathrm{~km}-(80+70) \\
& =50 \mathrm{~km}
\end{aligned}
$$

The distance between the two will decrease from 200 km to 50 km in one hour. The distance will decrease by 150 km , so the velocity will decrease by $150 \mathrm{~km} / \mathrm{hr}$.

$$
\begin{array}{ll}
\text { Worked example 1.5 } & \begin{array}{l}
\text { Calculate the relative velocity of a stone } \\
\text { thrown by the driver of a car towards }
\end{array} \\
& \begin{array}{l}
\text { another car travelling in an opposite } \\
\text { direction at a different speed }
\end{array}
\end{array}
$$

Car D is travelling at $50 \mathrm{~km} / \mathrm{hr}$ towards the east. Car F is travelling at $70 \mathrm{~km} / \mathrm{hr}$ towards the west approaching car D. The driver in car D throws a stone E that moves at $20 \mathrm{~km} / \mathrm{hr}$ east with respect to car $F$.

1. Calculate the relative velocity of the stone $E$ with respect to car $F$.
2. Calculate the relative velocity of the stone $E$ with respect to car $F$ if the two cars $D$ and $F$ are 400 km apart.

## Solution

1. Figure 1.7 shows he two cars travelling in opposite directions. A stone is thrown by one of the drivers towards the opposite car.



Figure 1.7 How to calculate the relative velocity of a stone E with respect to car $F$

$$
\begin{aligned}
& \text { Given: } V_{D}=50 \mathrm{~km} / \mathrm{hr} ; V_{F}=-70 \mathrm{~km} / \mathrm{hr} ; V_{E D}=20 \mathrm{~km} / \mathrm{hr} \\
& V_{E F}=V_{E}-V_{F} \\
& V_{E D}=V_{E}-V_{D} \\
& 20=V_{E}-50 \\
& \quad 20+50=V_{E} \\
& 70=V_{E}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
V_{E F} & =V_{E}-V_{F} \\
& =70-(-70) \\
& =70+70 \\
& =140 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

2. Figure 1.8 Shows two cars travelling in opposite directions. One of the drivers throws a stone towards the opposite car. The two cars are now 400 km apart.


$50 \mathrm{~km} / \mathrm{hr}$
70 km/h


Figure 1.8 How to calculate the relative velocity of stone $E$ with respect to car $F$ if the two cars D and F are 400 km apart

In Figure 1.8,
$V_{d}=140 \mathrm{~km}$
Therefore,
$V_{E F}=140 \mathrm{~km} / \mathrm{hr}$

## 3. Relative velocity along non-parallel lines

We can use the analytical method, which uses axes of a coordinate system, to solve problems concerning relative velocity along non-parallel lines. We use Pythagoras' theorem and the sine or cosine rules to calculate the relative velocity vector.

## Worked example 1.6 Calculate relative velocity along non-parallel

 lines (1)Two ships $A$ and $B$ are 20 km apart with ship $B$ due north of ship $A$. Ship $A$ is travelling at $10 \mathrm{~km} / \mathrm{hr}$ in the direction $060^{\circ}$ and ship $B$ is travelling at $8 \mathrm{~km} / \mathrm{hr}$ the direction $135^{\circ}$.

1. Calculate the velocity of ship $A$ relative to $B$.
2. Calculate the time to the nearest minute taken for ship $A$ to be exactly east of $B$.
3. Calculate the nearest distance between the two ships.

## Solution

1. Figure 1.9 shows the vector diagrams for Worked example 1.6 , answer 1


Figure 1.9 Vector diagrams for Worked example 1.6, answer 1
From the diagram:

$$
\begin{aligned}
& x^{2}=8^{2}+10^{2}-2(8)(10) \cos 75^{\circ} \\
& x=11,072 \mathrm{~km} / \mathrm{hr} \\
& \frac{10}{\sin \alpha}=\frac{11,072}{\sin 75} \\
& \alpha=60,74^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Required bearing: } \\
& =60,74-45 \\
& =0,15,74^{\circ}
\end{aligned}
$$

2. Figure 1.10 shows the vector diagrams for Worked example 1.6 , answer 2.


Figure 1.10 Vector diagram for Worked example 1.6, answer 2
From the diagram:

$$
\begin{aligned}
& \cos 15,74=\frac{20}{y} \\
& \begin{aligned}
& y=20,779 \mathrm{~km} \\
& \text { Time }=\frac{\text { Distance }}{\text { Speed }} \\
&=\frac{20,779}{11,072} \\
&=1,877 \mathrm{hrs} \\
&=113 \mathrm{mins}
\end{aligned}
\end{aligned}
$$

3. Figure 1.11 shows the vector diagram for Worked example 1.6, answer 3.


Figure 1.11 Vector diagram for Worked example 1.6, answer 3
From the diagram:

$$
\begin{aligned}
& \sin 15,74^{\circ}=\frac{z}{20} \\
& 20 \sin 15.74^{\circ}=z \\
& 5,425 \mathrm{~km}=z
\end{aligned}
$$

## Worked example 1.7 Calculate relative velocity along non-parallel lines (2)

A light aircraft is 70 nm northeast of Cape Town International Airport and it flies north for seven hours at an airspeed of $100 \mathrm{~km} / \mathrm{hr}$. Determine its position (displacement ) with reference to Cape Town International Airport in magnitude and direction.

## Solution



Figure 1.12 Vector diagram 1 for Worked example 1.7
From the diagram:
$S_{2}=V \times t$

$$
\begin{aligned}
& =7 \times \frac{100}{\text { hour }} \\
& =\frac{700 \mathrm{~km}}{\mathrm{~N}}
\end{aligned}
$$



Figure 1.13 Vector diagram 2 for Worked example 1.7
From the diagram:

$$
\begin{aligned}
V & =700 \sin 90^{\circ}+70 \sin 45^{\circ} \\
& =749,5 \mathrm{~km} \\
H & =700 \cos 90^{\circ}+70 \cos 45^{\circ} \\
& =49,5 \mathrm{~km}
\end{aligned}
$$



Figure 1.14 Vector diagram 3 for Worked example 1.7
From the diagram:

$$
\begin{aligned}
R & =\sqrt{49,5^{2}+749,5^{2}} \\
& =\sqrt{564200,5} \\
& =751,133 \mathrm{~km}
\end{aligned}
$$

```
\(\theta=\tan -1 \frac{749,5}{49,5}\)
    \(=86,22^{\circ}\)
\(R=751,133 \mathrm{E} 86,22^{\circ} \mathrm{N}\)
or,
N3, \(78^{\circ} \mathrm{E}\)
```


## Worked example 1.8 Calculate relative velocity along non-parallel lines (3)

An aircraft A departs Cape Town International Airport in a northerly direction at an airspeed of $250 \mathrm{~km} / \mathrm{hr}$. Another Aircraft B departs simultaneously from Stellenbosch aerodrome at an airspeed of $500 \mathrm{~km} / \mathrm{hr}$ in a direction of $60^{\circ}$. Calculate the velocity of aircraft A relative to the velocity of aircraft B.

## Solution



Figure 1.15 Vector diagram 1 for Worked example 1.8
From the diagram:

$$
\begin{aligned}
V_{r^{2}} & =250^{2}+500^{2}-2(250)(500) \cos 50^{\circ} \\
& =312500-250000(-0,866025403) \\
& =312500+216506,3508 \\
& =\sqrt{529006,3508} \\
& =727,33 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Direction:

$$
\begin{aligned}
& =\frac{\sin \theta}{250} \\
& =\frac{\sin 150}{727,33} \\
& \theta=\sin ^{-1}\left[\frac{\sin 150 \times 250}{727,33}\right] \\
& \theta=9,89^{\circ}
\end{aligned}
$$

Therefore, the velocity of $A$ relative to $B$ is $727,33 \mathrm{~km} / \mathrm{hr} W 70^{\circ} \mathrm{S}$.

Alternative method
Also referring to Figure 1.15

$$
\begin{aligned}
\sum V_{C} & =A+B \sin 60^{\circ} \\
& =250+500 \sin 60^{\circ} \\
& =683,013 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
& H_{C}=B \cos 60^{\circ} \\
& \sum=500 \cos 60^{\circ} \\
&=250 \mathrm{~km} / \mathrm{hr} \\
& R^{2}=\sum H c^{2}+\sum V c^{2} \\
&=250^{2}+683,013^{2} \\
&=\sqrt{529006,7582} \\
&=727,33 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$



Figure 1.16 Vector diagram 2 for Worked example 1.8

$$
\begin{aligned}
& \text { From the diagram: } \\
& \qquad \begin{aligned}
\tan \theta & =\frac{\theta_{c}}{H_{c}} \\
& =\frac{683,013}{250} \\
& =2,732052 \\
\theta & =\tan ^{-1} 2,732052 \\
= & 70^{\circ}
\end{aligned}
\end{aligned}
$$

Therefore, the velocity of $A$ relative to $B$ is $727,33 \mathrm{~km} / \mathrm{hr} W 70^{\circ} \mathrm{S}$.

## Activity 1.1

1. A red car and a blue car are travelling in the same direction due east at speeds of $80 \mathrm{~km} / \mathrm{hr}$ and $100 \mathrm{~km} / \mathrm{hr}$ respectively.
a) Find the velocity of the blue car relative to the red car.
b) Find the velocity of the red car relative to the blue car.
2. A bus and a car are 20 km apart initially. The bus is travelling at $40 \mathrm{~km} / \mathrm{hr}$ due east while the car is travelling at $60 \mathrm{~km} / \mathrm{hr}$ due west.
a) Find the velocity of the bus relative to the car.
b) Find the velocity of the car relative to the bus.
c) Find the time taken for the bus and the car to pass each.
3. A train travels at $40 \mathrm{~km} / \mathrm{hr}$ due east.
a) What is the relative velocity relative to earth of a man travelling on the train if he walks at $15 \mathrm{~km} / \mathrm{hr}$ due east?
b) What is the relative velocity to earth of a man travelling in the train if he walks at $15 \mathrm{~km} / \mathrm{hr}$ due west?
c) What is the relative velocity to earth of a man travelling on the train if he walks sideways at $15 \mathrm{~km} / \mathrm{hr}$ ?
4 Two cars start moving simultaneously. Vehicle A is travelling at $280 \mathrm{~km} / \mathrm{hr}, \mathrm{W} 33^{\circ} \mathrm{N}$ and vehicle B is travelling at $230 \mathrm{~km} / \mathrm{hr}$ directly east. Calculate the velocity of car B relative to car $A$.
4. A light aircraft (A) departs from King Shaka International Airport in a northerly direction at an airspeed of $450 \mathrm{~km} / \mathrm{h}$. Another light aircraft (B) departs simultaneously from Nelspruit International Airport at an airspeed of $850 \mathrm{~km} / \mathrm{hr}$ in the direction $\mathrm{W} 60^{\circ} \mathrm{S}$. Calculate the velocity of aircraft A relative to the velocity of aircraft B.
5. A light aircraft is 80 km northeast of Lanseria International Airport and flies north for 8 hours at an airspeed of $120 \mathrm{~km} / \mathrm{hr}$. Determine its displacement or position with reference to Lanseria International Airport in magnitude and direction.

## Unit 2: Resulting velocity

## LEARNING OUTCOMES

Calculate the resulting velocity and direction of a maximum of two vectors.

- Calculate the time taken to reach a certain destination.


## Introduction

This unit shows how to calculate the resulting velocity and direction of a maximum of two vectors and the time taken to reach a certain destination.

## 1. Resulting velocity

## Keywords

Resulting velocity: the vector sum of two or more velocities

Resulting velocity is the vector sum of two or more velocities. Resultant velocity helps us to establish how an external force acting on a moving object can decrease the speed of the moving object. For example, if a cyclist is travelling due east into a very strong wind moving west, the speed of the cyclist will be reduced since the strong headwind will act against the movement of the cyclist's bicycle.

## 2. How to calculate resultant velocity

Resultant velocity is calculated by simply adding two or more vectors. Depending on the situation you can use the Pythagorean theorem. Depending on the scenario you can calculate the resultant velocity using the formula:

$$
V_{f}-(\text { acceleration })(\text { time }) t V_{0}
$$

In N4 Engineering Science, we only calculate the resulting velocity and direction of a maximum of two vectors.

Worked example 1.9
Calculate resultant velocity (1)
A boat travels at $30 \mathrm{~m} / \mathrm{s}$ towards the east in calm water. A current flows towards the boat at $10 \mathrm{~m} / \mathrm{s}$. Calculate the resultant velocity of the boat.

## Solution

Figure 1.17 shows how to calculate the resultant velocity of the boat in Worked example 1.9.


Figure 1.17 How to calculate resultant velocity of the boat in Worked example 1.9
Given: Velocity of the body, $V_{1}=30 \mathrm{~m} / \mathrm{s}$ to the east; velocity of the current $V_{2}=10 \mathrm{~m} / \mathrm{s}$ to the west

Therefore, resultant velocity $V_{R}$

$$
\begin{aligned}
& =V_{1}+V_{2} \\
& =30 \mathrm{~m} / \mathrm{s}+(-10 \mathrm{~m} / \mathrm{s}) \\
& =10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## Worked example 1.10

Calculate resultant velocity (2)
An aircraft takes off from Cape Town International Airport in a direction of $\mathrm{N} 40^{\circ} \mathrm{W}$ at an airspeed of $400 \mathrm{~km} / \mathrm{hr}$. The aircraft is then blown off course by a wind of $150 \mathrm{~km} / \mathrm{hr}$ from a direction of $\mathrm{W} 30^{\circ} \mathrm{S}$. Calculate the resultant velocity of the aeroplane.

## Solution

Figure 1.18 shows how to calculate the resultant velocity of the aircraft in Worked example 1.10.


Figure 1.18 How to calculate resultant velocity for Worked example 1.10

Given: $V_{a}=400 \mathrm{~km} / \mathrm{hr} \mathrm{N} 40^{\circ} \mathrm{W}$
$V_{w}=150 \mathrm{~km} / \mathrm{hr} \mathrm{W} 30^{\circ} \mathrm{S}$
$R_{v}=$ ?
$\beta=\left(30^{\circ}+50^{\circ}\right)$

$$
=80^{\circ}
$$

$b=\sqrt{a^{2}+c^{2}-2 a c \cos B}$
$=\sqrt{400^{2}+150^{2}-2(400)(150) \cos 80^{\circ}}$
$=\sqrt{182500-20837,78132}$
$=\sqrt{161662,2187}$
$=402,0724048 \mathrm{~km} / \mathrm{hr}$
$\frac{\sin C}{c}=\frac{\sin B}{b}$
$b \sin C=c \sin B$
$402,072 \sin C=150 \sin 80^{\circ}$
$\sin C=\frac{150 \sin 80}{402,072}$
$C=\sin ^{-1}\left(\frac{150 \sin 80}{402,072}\right)$
$C=\sin ^{-1}(0,367399776)$
$=21,56^{\circ}$
$\theta=40-21,56$

$$
=18,44^{\circ}
$$

$R_{v}=402,072 \mathrm{~km} / \mathrm{hr} \mathrm{N} 18,44^{\circ} \mathrm{W}$

## Worked example 1.11

## Calculate resultant velocity (3)

A small aircraft flies north at $150 \mathrm{~km} / \mathrm{h}$. A $50 \mathrm{~km} / \mathrm{hr}$ crosswind blows the aircraft off course in a westerly direction. What is the resultant velocity?

## Solution

Figure 1.19 shows how to calculate the resultant velocity of the aircraft in Worked example 1.11.


Figure 1.19 How to calculate resultant velocity for Worked example 1.11

Given: Velocity of aircraft, $V_{P}=150 \mathrm{~km} / \mathrm{hr}$; wind velocity, $V_{w}=50 \mathrm{~km} / \mathrm{hr}$

$$
\begin{aligned}
& R_{V}^{2}=V p^{2}+V w^{2} \\
& \begin{aligned}
R_{V} & =\sqrt{150^{2}+50^{2}} \\
& =\sqrt{25000} \\
& =158,114 \mathrm{~km} / \mathrm{hr}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{O}{A} \\
& =\frac{50}{150} \\
\theta= & \tan ^{-1}\left(\frac{50}{150}\right) \\
= & 18^{\circ}
\end{aligned}
$$

## Worked example 1.12

An aeroplane flies northeast at $400 \mathrm{~km} / \mathrm{hr}$ and the wind blows to the east at $60 \mathrm{~km} / \mathrm{hr}$. What is the resultant velocity?

## Solution

Figure 1.20 shows how to calculate the resultant velocity of the aircraft in Worked example 1.12.


Figure 1.20 How to calculate resultant velocity for Worked example 1.12

$$
\begin{aligned}
& \text { Given: Velocity of aircraft, } V_{P}=400 \mathrm{~km} / \mathrm{hr} \text {; wind velocity, } V_{w}=60 \mathrm{~km} / \mathrm{hr} \\
& R=\sqrt{60^{2}+400^{2}-2(60)(400) \cos 135^{\circ}} \\
& =\sqrt{163600+33941,1255} \\
& =\sqrt{129658,8745} \\
& =360,082 \mathrm{~km} / \mathrm{hr} \\
& \frac{\sin \theta}{400}=\frac{\sin 135^{\circ}}{360,082} \\
& \sin \theta 360,082=400 \sin 135^{\circ} \\
& \sin \theta=\frac{400 \sin 135^{\circ}}{360,082} \\
& \theta=\sin ^{-1}\left[\frac{400 \sin 135}{360,082}\right] \\
& =51,77^{\circ}
\end{aligned}
$$

1. Define resultant velocity.
2. A light aircraft with an airspeed of $350 \mathrm{~km} / \mathrm{hr}$ takes off at Cape Town International Airport in a direction of $\mathrm{S} 33^{\circ} \mathrm{W}$. The aircraft is blown off course by a heavy $150 \mathrm{~km} / \mathrm{hr}$ wind blowing in a direction of $\mathrm{N} 49^{\circ} \mathrm{W}$. Calculate the resultant velocity of the aircraft in magnitude and direction.
3. A canoeist is rowing on the Vaal River at $4 \mathrm{~m} / \mathrm{s}$ in a northerly direction. A wind of $3 \mathrm{~m} / \mathrm{s}$ suddenly starts blowing in a southeasterly direction.
a) Calculate the resultant velocity of the canoe.
b) Calculate the displacement of the canoeist after 45 seconds.
4. An aircraft is flying north at $100 \mathrm{~km} / \mathrm{hr}$ and is being moved off course by a $40 \mathrm{~km} / \mathrm{hr}$ blowing towards the west. What is the resultant velocity of the aircraft?
5. An aircraft flies northeast at $600 \mathrm{~km} / \mathrm{hr}$ and a wind blows to the east at $80 \mathrm{~km} / \mathrm{hr}$. What is the resultant velocity of the aircraft?

## LEARNING OUTCOMES

- Do calculations dealing with projectiles that are launched horizontally from a certain vertical height or launched at an angle from the horizontal landing on the same horizontal plane.
- Calculate the maximum height reached by an object as well as the time of flight and range.
- Calculate the height and velocity at any part of the projectile path.
- Calculate the velocity of projection.
- Calculate the angle of projection.


## Introduction

Projectiles are commonly found in warfare and sports and include bullets, round balls and sports equipment, such as a shot putt.

This unit focuses on calculations regarding projectiles. This includes calculations dealing with projectiles that are launched horizontally from a certain vertical height or launched at an angle from the horizontal landing on the same horizontal plane.

The unit also shows how to calculate the maximum height reached by an object, the time of flight and range of these projectiles, the height and velocity at any part of the projectile path, the velocity of projection, and the angle of projection.

## 1. The motion of a projectile

A projectile motion is defined as the motion of an object thrown into the air and subject to only acted upon by gravitational acceleration. The value of gravitational acceleration used is $9,8 \mathrm{~m} / \mathrm{s}^{2}$ and the unit g is used. The object is referred to as the projectile and the path moved by an object is known as the trajectory. Examples of objects are balls or bullets.

For upward movement of an object:
Gravitational acceleration $a=-g=-9,8 \frac{\mathrm{~m}^{2}}{s}$ (deceleration)

For downward movement:

$$
a=g=\frac{9,8 m^{2}}{s} \text { (acceleration). }
$$

If an object or a body falls to earth from a height, its downward acceleration is uniform. Similarly, if a body or an object is thrown upwards, its deceleration upwards is uniform and equal to $g$.

## Keywords

Projectile motion: the motion of an object thrown into air and subject to only acted upon by gravitational acceleration

Projectile motion consists of two parts:

- horizontal motion - no acceleration
- vertical motion - constant acceleration due to gravitational acceleration.

The following are examples of projectile motion:

- a ball that has been thrown
- a bullet fired from a gun
- an arrow fired from a bow, or a stone launched with a slingshot

■ in sport, a golf ball or shot put
■ rockets or missiles.

## 2. Projectiles launched at an angle

When we throw an object, such as a ball, at an angle, it travels for a distance and then falls. In this case, gravitational force acts on the ball and makes it follow a parabolic path then fall to the ground.

When we fire a bullet from a gun, it travels a distance as a result of a force provided by the force of the propellant used. However, once the bullet leaves the gun, it is affected by gravitational force and will follow a parabolic path. The bullet will fall to the ground when it encounters an opposing force.


Figure 1.21 Parabolic path of a ball thrown in the air


Figure 1.22 Trajectory of a bullet fired from a gun

Figure 1.23 depicts the horizontal range or distance travelled by a projectile.


Figure 1.23 The horizontal range or distance travelled by a projectile

The trajectory of a projectile follows a curve called a parabola. The horizontal distance travelled by a projectile is known as the range

## 3. Motion of a ball falling from a cliff

Figure 1.24 shows a ball falling from a cliff. In the diagram, h shows the height of the cliff and dy is the distance the ball drops (vertically).


Figure 1.24 Vertical motion of an object (ball) ball falling from a cliff
The formulas that follow are derived from Figure 1.24.

$$
\begin{aligned}
& V_{0} \text { is initial velocity } \\
& h=\frac{1}{2} a t^{2} \\
& d=V_{0} t+\frac{1}{2} a t^{2} \\
& d_{y}=V_{0} t+\frac{1}{2} a y t^{2} \\
& h=0+\frac{1}{2} a t^{2}
\end{aligned}
$$

In Figure 1.25 a ball rolls from a cliff and falls. The drop has a horizontal component. R is the range, which is the horizontal distance between the base of the cliff and where the ball lands.

Parabola: the trajectory/curve of a launched or thrown projectile
Range: the horizontal distance travelled by a projectile


Figure 1.25 Horizontal motion of an object (ball) falling from a cliff

The formulas that follow are derived from Figure 1.25.

$$
\begin{aligned}
& h=\frac{1}{2} a t^{2} \\
& R=V_{x} t \\
& d x=V_{x} t \\
& a x=0 ; a y=-9,8 \mathrm{~m} / \mathrm{s}^{2} \\
& V_{F}=V_{Y o}+a t \\
& V=\sqrt{V x^{2}+V y^{2}} \\
& V x=V \cos \theta \\
& V y=V \sin \theta \\
& \sin \theta=\frac{V_{y}}{V} \\
& \cos \theta=\frac{V_{x}}{V} \\
& \tan \theta=\frac{V_{y}}{V_{x}} \\
& \theta=\tan ^{-1}\left(\frac{V_{y}}{V_{x}}\right)
\end{aligned}
$$

## 4. Horizontal displacement of a projectile

Figure 1.26 shows how to calculate the time it takes a ball to move between two points.


Figure 1.26 How to calculate the time it takes a thrown ball to go from A to B

From Figure 1.26:

$$
\begin{aligned}
& V_{Y}=V \sin \theta \\
& V_{X}=V \cos \theta \\
& V_{F}=V_{0}+\text { at, where } V_{F} \text { is the final velocity and } V_{O} \text { is the initial velocity. }
\end{aligned}
$$

The time the takes ball from A to B

```
\(V_{F}=V_{O}+a t\)
\(0=V \sin \theta+g t\)
\(-V \sin \theta=g t\)
\(\frac{V \sin \theta}{g}=t\), where \(t\) is the time it takes the ball from \(A\) to \(B\).
```

Figure 1.27 shows how to calculate the time it takes a projectile to move from one position to another and the height it reaches.


Figure 1.27 How to calculate the time it takes a thrown ball to go from $A$ to $C$ and the height it reaches

## From Figure 1.27:

$$
\begin{aligned}
& t=\frac{2 V \sin \theta}{g}, \text { where } t \text { is the time it takes the ball to go from } A \text { to } C . \\
& V_{y f}=V_{Y O^{2}}+2_{\text {aydy }} \\
& V F^{2}=V O^{2}+2 a d \\
& 0=(V \sin \theta)^{2}+2 g H \\
& -V^{2} \sin ^{2} \theta=2 g H \\
& H=\frac{V^{2} \sin ^{2} \theta}{2 g}
\end{aligned}
$$

Figure 1.28 shows how to calculate the range of a projectile.


Figure 1.28 How to calculate the range $R$ of a thrown ball

From the diagram,

$$
\begin{aligned}
& R=V_{x} t \\
& R=(V \cos \theta)(t) \\
& t=\frac{2 V \sin \theta}{9}(\text { the time it takes the ball from A to C) } \\
& R=V \sin \theta-\frac{2 V \sin \theta}{9} \\
& R=V^{2}\left(\frac{2 \sin \theta \cos \theta}{g}\right) \\
& \sin (2 \theta)=2 \sin \theta \cos \theta \\
& R=\frac{V \sin (2 \theta)}{9}, \text { where } R \text { is the range shown in Figure 1.28. }
\end{aligned}
$$

Figure 1.29 shows how to calculate $t$ using a quadratic equation.


Figure 1.29 How to calculate $t$ using a quadratic equation
From Figure 1.29:
$t(A$ to $C)=\frac{2 V \sin \theta}{g}$
$d=V_{0} t+\frac{1}{2} a t^{2}$
$V_{F}=-Y_{O}=V_{Y O} t+\frac{1}{2} g t^{2}$
$V_{F}=Y_{O}+V_{Y O} t+\frac{1}{2} g t^{2}$
$0=h+V \sin \theta t+\frac{1}{2} g t^{2}$
$t=-b \pm \sqrt{\frac{b^{2}-4 a c}{2 a}}$, where $t$ is the time taken by the ball from $A$ to $C$.
Also note:
Time taken by the ball from $A$ to $B$, $t=\frac{V \sin \theta}{g}$
Time taken by the ball from $B$ to $C$,

$$
\begin{aligned}
t & =H+Y_{0} \\
& =\frac{1}{2} a t^{2}
\end{aligned}
$$



Figure 1.30 Calculate the time it takes the ball from $A$ to $B$

From the diagram,

$$
t=\frac{V \sin \theta}{g}
$$

Height ( $h$ ) is calculated as follows:

$$
h=\frac{V^{2} \sin ^{2} \theta}{2 g}
$$

Time it takes the ball from B to C :

$$
\begin{aligned}
& h=\frac{1}{2} a t^{2} \\
& h+H=\frac{1}{2} a t^{2} \\
& t=\sqrt{\frac{2 Y_{\max }}{g}}
\end{aligned}
$$



Figure 1.31 Calculate the time it takes a ball from $B$ to $C$

From the diagram,

$$
\begin{aligned}
& R=V_{x} t \\
& R=\frac{V^{2} \sin (2 \theta)}{g} \\
& V_{X}=V \cos \theta \\
& R=V \cos \theta t \\
& V_{X} \text { is constant } \\
& V_{Y F}=V_{Y O}+a t
\end{aligned}
$$

We use $V_{Y F}=V \sin \theta+g t$ to calculate the velocity of the ball from A to C .

$$
\begin{aligned}
& V=\sqrt{V_{x^{2}}+V_{y^{2}}} \\
& \theta=\tan ^{-1}\left(\frac{V_{y}}{V_{x}}\right)
\end{aligned}
$$

## Worked example 1.13

A ball rolls horizontally off a cliff at $40 \mathrm{~m} / \mathrm{s}$. It takes 20 s for it to hit the ground Calculate the height of the cliff and the horizontal distance travelled by the ball.

## Solution



Figure 1.32 Diagram for Worked example 1.13
Given: $V_{x}=40 \mathrm{~m} / \mathrm{s} ; t=20 \mathrm{~s} ; a=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Height of cliff

$$
\begin{aligned}
h & =1 \_2 \text { at } 2 \\
& =0,5 \times 9.8 \times 202 \\
& =1980 \mathrm{~m}
\end{aligned}
$$

Horizontal distance travelled by the ball

$$
\begin{aligned}
R & =V_{x} t \\
& =\frac{40 \mathrm{~m}}{\mathrm{~s}} \times 20 \mathrm{~s} \\
& =800 \mathrm{~m}
\end{aligned}
$$

A ball rolls off a 200 m high cliff. Calculate the time it takes for the ball to hit the ground.

## Solution



Figure 1.33 Diagram for Worked example 1.14
Given: $h=200 \mathrm{~m} ; \mathrm{a}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& h=\frac{1}{2} a t^{2} \\
& 400=4.9 t^{2} \\
& 81,63265306=t^{2} \\
& \sqrt{81,63265306}=t \\
& t=9,04 \mathrm{~s}
\end{aligned}
$$

## Worked example 1.15

A ball is released from rest and drops straight down from a height of 600 m .

1. How long will the ball take to hit the ground?
2. How long will it take the ball to reach the ground if the ball was thrown down with an initial speed of $20 \mathrm{~m} / \mathrm{s}$ ?

## Solution



Figure 1.34 Diagram for Worked example 1.15

1. $h=\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& 600=0,5 \times 9.8 \times t^{2} \\
& 600=4,9 t^{2} \\
& \sqrt{122,4489796}=\sqrt{t^{2}} \\
& 11,05 s=t
\end{aligned}
$$

2. $d y=V_{Y O} t+\frac{1}{2} a y t^{2}$

$$
-600=-20 t+\frac{1}{2}(-9.8) t^{2}
$$

$$
-600=-20 t+-4,9 t^{2}
$$

$$
4,9 t^{2}+20 t-600=0
$$

$$
t=\frac{-b \pm \sqrt{b^{2}}-4 a c}{2 a}
$$

$$
t=\frac{-20 \pm \sqrt{20^{2}}-4(4,9)(-60)}{9.8}
$$

$$
t=\frac{-20 \pm \sqrt{400+11760}}{9,8}
$$

$$
=\frac{-20 \pm \sqrt{12160}}{9,8}
$$

$$
=\frac{-20 \pm 110,272}{9,8}
$$

$$
=9,21 \mathrm{~s}
$$

or,
$-13,293$ s

## Worked example 1.16

## Projectile calculations (3)

An object is projected at such an angle that the range (horizontal displacement) is three times the maximum height reached. The initial velocity of the object is $270 \mathrm{~m} / \mathrm{s}$. Calculate the angle at which the object is projected.

## Solution

$S($ horizontal $)=3 \times S($ vertical $)$

$$
\begin{aligned}
& \frac{U^{2} \sin \theta}{g}=\frac{3 U^{2} \sin \theta}{2 g} \\
& \frac{U^{2} \sin \theta \times g}{g \times U^{2}}=\frac{3 U^{2} \sin ^{2} \theta \times g}{g \times U^{2}} \\
& \frac{3 \sin \theta \times \sin \theta \times 2}{2 \times \sin 2 \theta \times 3}=\frac{\sin 2 \theta \times 2}{\sin 2 \theta \times 3}
\end{aligned}
$$

But,
$\sin 2 \theta=2 \sin \theta \cos \theta$ (from compound angles)

$$
\frac{\sin \theta \sin \theta}{2 \sin \theta \cos \theta}=\frac{2}{3}
$$

$$
\frac{\sin \theta}{\cos \theta}=\frac{2 \times 2}{3}
$$

$$
\tan \theta=\frac{4}{3}
$$

$$
\theta=53,13^{\circ}
$$

Or,
$S($ horizontal $)=270 \cos \alpha(2) t$
$S($ vertical $)=270 \sin \alpha t+\frac{1}{2} g t^{2}$
$S($ horizontal $)=3 \times S($ vertical $)$
$270 \cos \alpha(2) t=3(270 \sin \alpha t)+\frac{1}{2} g t^{2}$
$t$ (maxheight) : $V=U+g t$

$$
\begin{aligned}
& 0=270 \sin \alpha-9,8 t \\
& 9,8 t=270 \sin \alpha \\
& t=27,55 \sin \alpha \\
& 270 \cos \alpha(2)=3\left(270 \sin \alpha+\frac{1}{2} g t\right) \\
& 540 \cos \alpha=810 \sin \alpha-14,7 t \\
& 540 \cos \alpha=810 \sin \alpha-14,7(27,55 \sin \alpha) \\
& 540 \cos \alpha=810 \sin \alpha-404,985 \sin \alpha \\
& 540 \cos \alpha=405,015 \sin \alpha \\
& \frac{540}{405,015}=\frac{\sin \alpha}{\cos \alpha} \\
& \frac{540}{405,15}=\tan \alpha \\
& 53,129^{\circ}=\tan \alpha
\end{aligned}
$$

## Worked example 1.17

## Projectile calculations (4)

A store is thrown at a velocity of $42 \mathrm{~m} / \mathrm{s}$ at an angle of $26^{\circ}$ to the horizontal.

1. Calculate the maximum height that the stone reaches.
2. Calculate the horizontal displacement of the stone.

## Solution

From the first principle:

1. S(vertical)

$$
\begin{aligned}
& =\frac{U^{2} \sin ^{2} \theta}{2 g} \\
& =\frac{42^{2} \sin ^{2} 26^{\circ}}{2 \times 9,8} \\
& =17,295 \mathrm{~m}
\end{aligned}
$$

2. $S$ (horizontal)

$$
\begin{aligned}
& =\frac{U^{2} \sin 2 \theta}{9} \\
& =\frac{42^{2} \sin 2 \times 26^{\circ}}{9,8} \\
& =141,841 \mathrm{~m}
\end{aligned}
$$

Alternative method:

1. $S(\max )=\frac{v^{2}-u^{2}}{2 g}$

$$
\begin{aligned}
& =\frac{0^{2}-425 \times 26}{2 \times-9,8} \\
& =17,295 \mathrm{~m}
\end{aligned}
$$

2. $S($ range $)=U \times t$

$$
\begin{aligned}
& =U \cos \theta \times \frac{2(U \sin \theta)}{9} \\
& =\frac{42 \cos 26^{\circ} \times 2 \times 42 \sin 42^{\circ}}{9.8} \\
& =141,841 \mathrm{~m}
\end{aligned}
$$

## Worked example 1.18

A boy throws a cricket ball at an angle of $15^{\circ}$ to the horizontal with an initial velocity of $30 \mathrm{~m} / \mathrm{s}$. The path of the ball is that of a projectile.

1. Calculate the time the ball takes to reach its maximum height.
2. Calculate the maximum height reached by the ball.
3. Calculate the horizontal displacement of the ball.

## Solution



Figure 1.35 Diagram for Worked example 1.18

```
Given: \(U=30 \mathrm{~ms} ; V=0 \frac{\mathrm{~m}}{\mathrm{~s}} ; \quad a=g=-9,8 \frac{\mathrm{~m}}{\mathrm{~s}} ; U_{x}=30 \cos 15^{\circ}=29 \frac{\mathrm{~m}}{\mathrm{~s}} ;\)
\(U_{Y}=30 \sin 15^{\circ}=7,76 \mathrm{~m} / \mathrm{s}\)
1. \(t=\frac{v-u}{a}\)
\[
=\frac{0-7,76}{-9,8}
\]
\[
=0,792 \mathrm{~s}
\]
\[
\text { 2. } S=U t+\frac{1}{2} a t^{2}
\]
\[
\begin{aligned}
& =(7,76 \times 0,792)+\frac{1}{2}\left(-9.8\left(0,792^{2}\right)\right) \\
& =3.072 \mathrm{~m}
\end{aligned}
\]
\[
=3,072 \mathrm{~m}
\]
3. \(S=U t\)
\[
=U_{x} \times 2 t
\]
\[
=2 \hat{9} \times 2 \times 0,792
\]
\[
=45,936 \mathrm{~m}
\]
```


## Worked example 1.19

A bullet is fired at a muzzle velocity of $125 \mathrm{~m} / \mathrm{s}$ at an angle of $25^{\circ}$ to the horizontal.

1. Calculate the horizontal distance of the bullet after 8 seconds.
2. Calculate the maximum height of the bullet.

## Solution

1. $U_{x}=U \cos \theta$

$$
=120 \cos 25^{\circ}
$$

$$
=108,757 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta_{x}=U_{x} \times 2 t
$$

$$
=108,757 \times 2 \times 8
$$

$$
=1740,111 \mathrm{~m}
$$

2. $\Delta_{Y}=\left(U_{\curlyvee} \times t\right)-\frac{1}{2} g t^{2}$

$$
\begin{aligned}
& =(52,83 \times 8)-\left(\frac{1}{2} \times 9,8 \times 8^{2}\right) \\
& =(422,62)-(313,6)=109,02 \mathrm{~m}
\end{aligned}
$$

## Activity 1.3

1. Define a projectile motion.
2. Define a trajectory.
3. List FOUR examples of projectile motions.
4. An object is projected at such an angle that the range (horizontal displacement) is
three times the maximum height reached. The initial velocity of the object is $280 \mathrm{~m} / \mathrm{s}$. Calculate the angle at which the object is projected.
5. A stone is thrown at a velocity of $40 \mathrm{~m} / \mathrm{s}$ at an angle of $25^{\circ}$ to the horizontal. Calculate the following:
a) The maximum height that the stone reaches.
b) The horizontal displacement of the stone.
6. A boy throws a cricket ball at an angle of $20^{\circ}$ to the horizontal with an initial velocity of $35 \mathrm{~m} / \mathrm{s}$. The path of the ball is that of a projectile. Calculate the following:
a) The time to reach the maximum height.
b) The maximum height reached by the ball.
c) The horizontal displacement of the ball.
7. A ball is released from rest and drops straight down from a height of 500 m .
a) How long will it take to hit the ground?
b) How long will it take to reach the ground if the ball was thrown down with an initial speed of $25 \mathrm{~m} / \mathrm{s}$ ?
8. A bullet is fired at a muzzle velocity of $130 \mathrm{~m} / \mathrm{s}$ at an angle of $30^{\circ}$ to the horizontal. Calculate the following:
a) The horizontal distance of the bullet after 6 seconds.
b) The maximum height of the bullet.

## Module summary

- Relative velocity is defined as the velocity of an object relative to something else; it is the difference between two velocities.
- Resulting velocity is the vector sum of two or more velocities.
- Resulting velocity is calculated by simply adding two or more vectors.
- Pythagorean theorem is also used to calculate resulting velocity depending on a situation.
- The formula, $V_{f}-a t+V_{0}$ is also used to calculate resulting velocity depending on a given scenario.
- A projectile motion is defined as the motion of an object thrown into the air and subject only acted upon by gravitational acceleration.
- The value of gravitational acceleration used in this module is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- Projectile motion consists of two parts: horizontal motion and vertical motion.


## Module 1 Checklist

Before you attempt to answer the exam type questions, go through the following checklist with a list of learning outcomes taken from the syllabus. Check that you understand all concepts /learning outcomes covered in Module 1 of the N4 Engineering Science syllabus.

| Learning content | Learning outcomes | Yes | No |
| :--- | :--- | :--- | :--- |
| 1.1 Relative velocity | ■Solve problems dealing with constant linear motion <br> analytically (Pythagoras or the sine and cosine rules). <br> (Determine the relative velocity, shortest distance, <br> time to intercept and actual velocity. |  |  |


| Learning content | Learning outcomes | Yes | No |
| :--- | :--- | :--- | :--- | :--- |
| 1.2 Resulting velocity | -Calculate the resulting velocity and direction of a <br> maximum of two vectors. <br> Calculate the time to reach a certain destination. <br> 1.3 Projectiles- Do calculations dealing with projectiles that are <br> launched horizontally from a certain vertical height <br> or launched at an angle from the horizontal landing <br> on the same plane. <br> Calculate the maximum height reached by an object <br> as well as the time of flight and range. <br> Calculate the height and velocity at any part of the <br> projectile path. <br> Calculate the velocity of projection. <br> Calculate the angle of projection. |  |  |

## Exam practice questions

1. A light aircraft is 50 km northeast of Cape Town International Airport and flies north for five hours at an airspeed of $95 \mathrm{~km} / \mathrm{hr}$. Determine its position (displacement ) with reference to Cape Town International Airport in magnitude and direction.
2. A gold mine shaft has a depth of 230 m . Hoist A descends at $6 \mathrm{~km} / \mathrm{hr}$ and hoist B ascends at $5 \mathrm{~km} / \mathrm{hr}$. Calculate the following:
a) The velocity of the hoist A relative to the velocity of the hoist B in magnitude and direction
b) The velocity of hoist B relative to the velocity of hoist A in magnitude and direction.
3. A stone is thrown at a velocity of $38 \mathrm{~m} / \mathrm{s}$ at an angle of $20^{\circ}$ to the horizontal. Calculate the following:
a) The maximum height that the stone reaches.
b) The horizontal displacement of the stone.
4. An aircraft A departs from Lanseria International Airport in a northerly direction at an airspeed of $280 \mathrm{~km} / \mathrm{hr}$. Another aircraft B departs simultaneously from OR Tambo International Airport at an airspeed of $600 \mathrm{~km} / \mathrm{hr}$ in a direction W $60^{\circ} \mathrm{S}$.
Calculate the velocity of aircraft A relative to the velocity of aircraft B.
5. A boy throws a cricket ball at an angle of $10^{\circ}$ to the horizontal with an initial velocity of $30 \mathrm{~m} / \mathrm{s}$. The path of the ball is that of a projectile. Calculate the following:
a) The time to reach the maximum height.
b) The maximum height reached by the ball.
c) The horizontal displacement of the ball.
6. A canoeist can row $20 \mathrm{~m} / \mathrm{s}$ in calm water. The river flows at $5 \mathrm{~m} / \mathrm{s}$ and is 100 m wide.
a) In which direction does the canoeist have to row to cross the river at a rectangular angle?
b) How long will it take to reach the opposite side of the river?
7. Two vehicles start moving simultaneously, a blue car at $250 \mathrm{~km} / \mathrm{hrW} 33^{\circ} \mathrm{N}$ and a red car at $210 \mathrm{~km} / \mathrm{hr}$ directly east. Calculate the velocity of the red car relative to the blue car.
