Platinum Mathematics

Navigation pack

Pearson South Africa (Pty) Ltd
4th floor, Auto Atlantic Building, Corner of Hertzog Boulevard and Heerengracht, Cape Town, 8001
Offices in Johannesburg, Durban, East London, Polokwane, Bloemfontein, Rustenburg and Mbombela.
© Pearson South Africa (Pty) Ltd

All Rights Reserved. This digital publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise except as authorized for use under the product subscription through which this digital application is accessed.

To request permission to reproduce or adapt any part of this publication, please visit https://www.pearson.com/global-permission-granting.html

Every effort has been made to trace the copyright holders of material produced in this title. We would like to apologise for any infringement of copyright so caused, and copyright holders are requested to contact the publishers in order to rectify the matter.

Mathematics Grade 11 Navigation Pack
Print ISBN: 9781485720379
Print GUID: B7EAC847-2F36-47BE-8EBF-175687D5CFAA
EPDF ISBN: 9781485720423
EPDF GUID: 14C32E05-2917-486D-8B10-8FDFDF85C277

Acknowldgements

MyPedia Assessments Maths Grade 11, Calvin Dube, (Ed) 2019. Reprinted by permission of Pearson South Africa Pty (Ltd)
Cover design by Pearson Media Hub
Typesetting by Stronghold Publishing CC

Contents

Dear Teacher 5
COVID-19 Safety Guidelines 6
How to use this Navigation Pack 8
Navigation Guide 9
Term 1 11
Term 2 15
Term 3 18
Term 4 21
Targeted Worksheets 22
Worksheet 1 24
Worksheet 2 29
Worksheet 3 32
Targeted Worksheets Answers 35
Exemplar Assessments 41
Task: Term 2 Control Test 42
Task: Term 3 Control Test 1 46
Task: Term 3 Control Test 2 49
Task: Term 4 Control Test 52
Task: Term 4 Final Examination Paper 1 55
Task: Term 4 Final Examination Paper 2 60
Exemplar Assessments Answers 66

Find us online

Pearson

We remain committed to support you and continue to provide great service to our valued partners in education.

Visit za.pearson.com for product information, educational news, access catalogues or to contact your Pearson key account manager to assist you on your teaching journey.

Classroom Solutions

Classroom Solutions was designed to help save you time, so you can spend more time getting creative about learning. Join a growing community of teachers and access free teaching resources for Grade R to 12, such as lesson plans, worksheets, videos, podcasts and more.
Register for free at classroomsolutions.co.za

Pearson eStore

Pearson offers the widest range of CAPS-approved content in South Africa, available in various eBook formats to suit you and your learners' needs.
Browse and purchase eBooks at shop.pearson.co.za

Dear Teacher

The National State of Disaster due to the COVID-19 pandemic has resulted in the disruption of Education in South Africa and the loss of valuable teaching time and disruption of the school calendar.

As a result of this, the DBE has created and released revised Annual Teaching Plans (ATPs) to assist schools and teachers in ensuring the 2021 school year is completed. The 2021 ATPs are based on the revised ATPs that were developed in 2020. It is important to note that fundamental and core topics are retained in the 2021 ATPs. Some of the strategies that have been used in the process of developing the 2021 DBE ATPs are:

- reduction of content covered in certain topics
- merging of topics
- deleting topics
- revising the assessment guidelines
- reduction in teaching time for certain topics
- resequencing of topics/concepts

At Pearson South Africa, we believe that education is the key to every individuals' success. To ensure that despite the challenges, teachers and learners can meet all the necessary learning outcomes for the year, we have created the Navigation Guide, a free resource to support teachers and learners during this challenging time.
The Navigation Pack aims to summarise and highlight the changes in the 2021 DBE ATP and provide teachers and learners with worksheets that focus on impacted topics in the curriculum.

Due to resequencing of topics, the order of topics in the textbook that is currently used in the classroom may not be aligned to the new sequence of topics in the ATP. Pearson has included page numbers from one of our tried and tested series, Platinum, to guide the teacher and learners as they navigate through the textbook, with the 2021 ATP. The Navigation Pack has a set of assessments based on the Section 4 changes and the revised assessment guidelines.

COVID-19 safety guidelines for teachers and learners

Gatherings at school

Where schools are open for learning, it is up to management to take decisive action to ensure sites are not simultaneously used for other functions such as shelters or treatment units in order to reduce the risk.

Implement social distancing practices that may include:

- A staggered timetable, where teachers and learners do not arrive/leave at the same time for the beginning and end of the school day.
- Cancelling any community meetings/events such as assemblies, cake sales, market dy, tuckshop, after-care classes, matric dance, Eisteddfod and other events.
- Cancelling any extra-mural activities such as ballet classes, swimming lessons, sport games, music class and other events that create a crowd gathering.
- Teaching and modeling creating space and avoiding unnecessary touching.
- Limiting movement and interaction between classes.
- Schools with an established feeding scheme plan are to ensure that hygiene and social distancing is always implemented. Teachers and staff members assisting with food
- distribution are to wear masks, sanitise prior to issuing food items and learners are to stand $1,5 \mathrm{~m}$ apart in the queue.

Wear a mask at all times.

1. Restrooms/toilets

Hand washing

Washing hands with soap and water or using alcohol-based hand sanitisers \ddagger is one of the most important ways to help everybody stay healthy at school. Critical to this is preparing and maintaining handwashing stations with soap and water at the toilet and in each classroom.

Teachers and learners should always wash their hands after:

- eating
- entering the classroom
- using the toilet
- blowing your nose or coughing
- touching tears, mucous, saliva, blood or sweat.

2. Premises and Classroom setting

When schools open, classroom settings should be altered in order to promote hygiene, safety and social distancing.

Changed classroom settings may include:

- Cleaning and disinfecting school buildings, classrooms and especially sanitation of facilities at least once a day, particularly surfaces that are touched by many people (railings, lunch tables, sports equipment, door and window handles, toys, teaching and learning tools etc.).
- Ensure the proper ventilation and fresh flow of air through classrooms.
- Providing learners with vital information about how to protect themselves by incorporating the importance of hygiene, handwashing and other measures of protecting themselves, into the lessons.
- Promoting best handwashing and hygiene practices and providing hygiene supplies.
- Prepare and maintain handwashing stations with soap and water, and if possible, place alcohol-based hand sanitisers in each classroom, at entrances and exits, and near lunchrooms and toilets.

- Ensure teachers and learners wear a mask at all times.

Social distancing

- Space the learners out in the classroom (or outdoors) - try to keep learners separated by a minimum of $1,5 \mathrm{~m}$.

- Do not let learners eat items that fall on the floor or chew on pencils or other objects
- Avoid close contact, like shaking hands, hugging or kissing

3. Social behaviour

It is extremely vital during a pandemic that focus is not only directed towards optimal physical health and hygiene but fi nding ways to facilitate mental health support.

- Treat everybody with respect and empathy - no teasing about COVID-19.
- Encourage kindness towards each other and avoid any stereotyping when talking about the virus.
- Stay home if you have a temperature or are ill.
- Do not touch people who are ill, but be empathetic.

How to use this Navigation Pack

Revised DBE Teaching Plan: Comprehensive summary of the CAPS topics according to the revised ATPs.

Navigation Plan: Link to the
Platinum series, as well as additional resources in the Navigation Pack.

Revsfo obe amvan tractuc pun				Nancartovean	
Toonc	Contrens secticic concters		${ }^{\text {rMm }}$		Page erferemect
$\begin{aligned} & \hline \text { FUNCTIONS: } \\ & \text { TROGONOMETRIC } \\ & \text { FUNCTIONS } \end{aligned}$					Papel16-122
				Patambe	
				Patambe	隹
				(Patam	
				(Patambe	
${ }^{\text {Renson }}$					\%ex
				隹	
${ }^{\text {assessenins }}$	Torazasisment				
	Tras4 Test				
		$0^{\text {Poratil weiss }=10}$			

[*9 June examination has been replaced with a controlled test. The three weeks normally allocated to June examinations has been removed to create more time for deeper learning and to ensure the topics that were trimmed or removed in the previous year are covered in grade 11 (DBE Circular S13 of 2020, Paragraph 6g)

Assessments for the Term as per the revised ATPs and the Section 4 amendments.

Link to a targeted worksheet in the Navigation Pack, that focus on impacted or challenging topics in the curriculum

Footnotes provide any additional information.

Link to an exemplar assessment in the Navigation Pack, that was created with Section 4 and curriculum changes in mind.

Navigation Guide

GRADE 11

Mathematics**1

TERM	TOPIC	TIME (WEEKS)
TERM 1	Exponents and surds	2
	Equations and inequalities	3
	Euclidean Geometry	3
	Trigonometry (reduction formulae, graphs, equations)	2
TERM 2	Trigonometric equations	1
	Analytical Geometry	3
	Number patterns	2
	Functions	4
TERM 3	Trigonometry (Sine, Cosine and area rules)	3
	Measurement	2
	Statistics	3
	Probability	2
TERM 4	Euclidean Geometry	2
	Finance, growth and decay	3
	Revision	1
	Examination	3

Programme of Assessment ${ }^{* * 2}$

TERM 1	TERM 2	TERM 3	TERM 4
Task 1 Investigation / Project (15\%)	Task 3 Assignment (15\%)	Task 5 Test (10\%)	Task 7 Test (10\%)
Task 2 Test (10\%)	Task 4 Test (10\%)	Task 6 Test (10\%)	Final Examination
For reporting 25\% inv/pro 75% Test	For reporting 25\% assignment 75% Test	For reporting 50% Test 50% Test	

[^0]| REVISED DBE ANNUAL TEACHING PLAN | | | | NAVIGATION PLAN | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TOPIC | CONTENT SPECIFIC CONCEPTS | UNIT | TIME | LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK | PAGE REFERENCE |
| EXPONENTS AND SURDS
 (2 WEEKS) | Simplify expressions and solve equations using the laws of exponents for rational exponents where: $x^{\frac{p}{q}}=\sqrt[q]{x^{p}} ; x>0 ; q>0 .$ | Unit 1: Laws of exponents (revision) | 2 weeks | Platinum LB*1
 Platinum TG*2 | $\begin{aligned} & \text { Page 4-8 } \\ & \text { Page 4-8 } \end{aligned}$ |
| | Add, subtract, multiply and divide simple surds. | Unit 2: Simplify expressions with rational exponents | | Platinum LB Platinum TG | Page 9-10
 Page 8-9 |
| | Solve simple equations involving surds. | Unit 3: Solve equations with rational exponents | | Platinum LB Platinum TG | $\begin{aligned} & \text { Page } 11-13 \\ & \text { Page } 10-11 \end{aligned}$ |
| | | Unit 4: Surds | | Platinum LB Platinum TG | $\begin{aligned} & \text { Page 14-19 } \\ & \text { Page 12-18 } \end{aligned}$ |
| REVISION | | | | Platinum LB: Topic Revision Platinum TG: Topic Revision answers | $\begin{aligned} & \text { Page } 20-21 \\ & \text { Page } 18-22 \end{aligned}$ |
| ASSESSMENTS | | | | Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet | Page 294
 Page 295 |

Term 1

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
EQUATIONS AND INEQUALITIES (3 WEEKS)	Complete the square.	Unit 1: Completing the square	3 weeks	Platinum LB Platinum TG	$\begin{aligned} & \text { Page 22-26 } \\ & \text { Page } 25-27 \end{aligned}$
	Solve quadratic equations (by factorization and by using the quadratic formula).	Unit 2: Quadratic equations		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 27-34 } \\ & \text { Page } 27-34 \end{aligned}$
	Solve quadratic inequalities in one unknown.	Unit 3: Quadratic inequalities		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 35-39 \\ & \text { Page } 34-36 \end{aligned}$
	Equations in two unknowns (simultaneous equations).	Unit 4: Equations in two unknowns, one of which is linear and the other quadratic		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 40-41 \\ & \text { Page } 36-40 \end{aligned}$
	Nature of roots.	Unit 5: Nature of roots		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 42-43 } \\ & \text { Page } 41-42 \end{aligned}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision answers	$\begin{aligned} & \text { Page 44-45 } \\ & \text { Page } 42-46 \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	Page 296 Page 297

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
EUCLIDEAN GEOMETRY AND MEASUREMENT*3 (3 WEEKS)	Explore the various Grade 11 Circle Geometry theorems investigative. Formalise the theorems. Accept results established in earlier grades as axioms and also that a tangent to a circle is perpendicular to the radius, drawn to the point of contact. Then investigate and prove the theorems of the geometry of circles: formal proofs required ${ }^{* 4}$	Unit 1: Geometry revision	3 weeks	Platinum LB Platinum TG	Page 188-189 Page 203-204
		Unit 2: Circles, perpendicular lines through the centre, chords and midpoints - The line drawn from the centre of a circle perpendicular to a chord bisects the chord. - The perpendicular bisector of a chord passes through the centre of the circle.		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 190-193 } \\ & \text { Page 205-207 } \end{aligned}$
		Unit 3: Angle at centre theorem and cyclic quadrilaterals - The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre). - Angles subtended by a chord of the circle, on the same side of the chord, are equal. - The opposite angles of a cyclic quadrilateral are supplementary.		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 194-201 } \\ & \text { Page 207-210 } \end{aligned}$
		Unit 4: Tangents - Two tangents drawn to a circle from the same point outside the circle are equal in length. - The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 202-210 } \\ & \text { Page 210-215 } \end{aligned}$

[^1]
Term 1

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision answers	$\begin{array}{\|l\|} \hline \text { Page 211-213 } \\ \text { Page 215-217 } \\ \hline \end{array}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	Page 310 Page 311
TRIGONOMETRY*5 (2 WEEKS)	Trigonometry (reduction formulae, graphs, equations). Derive and use the identities Derive and use reduction formulae to simplify expressions. Determine for which values of a variable an identity holds.	Unit 1: Revision of Grade 10 trigonometry		Platinum LB Platinum TG	$\begin{array}{\|l\|} \hline \text { Page 138-141 } \\ \text { Page 148-142 } \end{array}$
		Unit 2: Identities $\tan \theta=\frac{\sin \theta}{\cos \theta^{\prime}} \theta \neq k \cdot 90^{\circ} ; k$ an odd integer; and $\sin ^{2} \theta+\cos ^{2} \theta=1$.	2 weeks	Platinum LB Platinum TG	$\begin{aligned} & \text { Page 142-145 } \\ & \text { Page } 152-156 \end{aligned}$
		Unit 3: Reduction formulae Simplify the following expressions: $\sin \left(90^{\circ} \pm \theta\right) ; \cos \left(90^{\circ} \pm \theta\right) ;$ $\sin \left(180^{\circ} \pm \theta\right) ; \cos \left(180^{\circ} \pm \theta\right)$ and $\tan \left(180^{\circ} \pm \theta\right) ; \sin \left(360^{\circ} \pm \theta\right) ;$ $\cos \left(360^{\circ} \pm \theta\right)$ and $\tan \left(360^{\circ} \pm \theta\right) ;$ $\sin (-\theta) ; \cos (-\theta)$ and $\tan (-\theta)$.		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 146 \text { - } 154 \\ & \text { Page } 157-162 \end{aligned}$
ASSESSMENTS	Task 1: Investigation or project Task 2: Control Test				
TOTAL WEEKS = 10					

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
TRIGONOMETRY (CONTINUED) (1WEEK)	Determine the general solutions of trigonometric equations.	Unit 4: Trigonometric equations - specific and general solutions	1 week	Platinum LB Platinum TG	$\begin{aligned} & \text { Page 155-162 } \\ & \text { Page 163-174 } \end{aligned}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision	$\begin{aligned} & \text { Page 163-165 } \\ & \text { Page 175-179 } \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	Page 306 Page 307
ANALYTICAL GEOMETRY*6 (3 WEEKS)	Revision	Distance between the two points. Gradient of the line segment connecting the two points (and from that identify parallel and perpendicular lines). Coordinates of the mid-point of the line segment joining the two points.	3 weeks	Platinum LB Platinum TG	$\begin{aligned} & \text { Page 56-61 } \\ & \text { Page 65-68 } \end{aligned}$
		Unit 1: The equation of a straight line		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 56-61 } \\ & \text { Page 65-68 } \\ & \hline \end{aligned}$
		Unit 2: Inclination of a line where $m=\tan \theta$ is the gradient of the line $\left(0^{\circ} \leq \theta \leq 180^{\circ}\right)$.		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 62-66 } \\ & \text { Page 68-69 } \end{aligned}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision	$\begin{aligned} & \hline \text { Page 67-69 } \\ & \text { Page 69-78 } \\ & \hline \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	$\begin{aligned} & \text { Page } 300 \\ & \text { Page } 301 \end{aligned}$

Term 2

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
NUMBER PATTERNS*7 (2 WEEKS)	Revise: Linear Patterns Quadratic Patterns General term	Unit 1: Linear patterns	2 weeks	Platinum LB Platinum TG	$\begin{array}{\|l\|} \hline \text { Page } 46-47 \\ \text { Page } 48-49 \end{array}$
		Unit 2: Quadratic patterns Investigate number patterns leading to those where there is a constant second difference between consecutive terms, and the general term is therefore quadratic.		Platinum LB Platinum TG	$\begin{array}{\|l} \text { Page 48-53 } \\ \text { Page 49-59 } \end{array}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision answers	$\begin{aligned} & \text { Page 54-55 } \\ & \text { Page 59-63 } \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet	Page 298-299
FUNCTIONS: EFFECTS OF PARAMETERS*8 (4 WEEKS)	Functions: Parabola; Hyperbola; Exponential. Average gradient between two points on a curve.	Unit 1: The effects of the parameters a, p and q on parabolas	4 weeks	Platinum LB Platinum TG	$\begin{array}{\|l\|} \hline \text { Page } 82-91 \\ \text { Page } 91 \text { - } 101 \\ \hline \end{array}$
		Unit 2: The effects of the parameters a, p and q on hyperbolas		Platinum LB Platinum TG	$\begin{array}{\|l} \text { Page } 92 \text { - } 100 \\ \text { Page 101-109 } \end{array}$
		Unit 3: The effects of the parameters a, p and q on exponential graphs		Platinum LB Platinum TG	$\begin{array}{\|l\|} \hline \text { Page 101-107 } \\ \text { Page 110-115 } \\ \hline \end{array}$
		Unit 4: Real life applications		Platinum LB Platinum TG	$\begin{array}{\|l\|} \text { Page 108-110 } \\ \text { Page 114-116 } \end{array}$
		Unit 5: The average gradient between two points on a curve		Platinum LB Platinum TG	$\begin{array}{\|l} \text { Page } 111 \text { - } 113 \\ \text { Page } 116 \text { - } 118 \end{array}$
REVISION				Platinum LB: Topic Revision Platinum TG; Topic Revision	$\begin{array}{\|l\|} \text { Page 114-115 } \\ \text { Page 118-121 } \end{array}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	Page 302 Page 303

[^2]| REVISED DBE ANNUAL TEACHING PLAN | | | | NAVIGATION PLAN | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TOPIC | CONTENT SPECIFIC CONCEPTS | UNIT | TIME | LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK | PAGE REFERENCE |
| FUNCTIONS: TROGONOMETRIC FUNCTIONS | Sketching.
 The effect of parameters $a ; p$ and k on: $\begin{aligned} & y=a \sin k(x+p) \\ & y=a \cos k(x+p) \\ & y=a \tan k(x+p) \end{aligned}$ | Unit 1: Revision of trigonometric graphs using point-by-point plotting | | Platinum LB Platinum TG | Page 116-122
 Page 123-127 |
| | | Unit 2: The effects of the parameter k on some trigonometric functions | | Platinum LB Platinum TG | $\begin{aligned} & \text { Page 123-124 } \\ & \text { Page 127-130 } \\ & \hline \end{aligned}$ |
| | | Unit 3: Horizontal shifts | | Platinum LB
 Platinum TG | $\begin{aligned} & \text { Page 125-129 } \\ & \text { Page 130-134 } \end{aligned}$ |
| | | Unit 4: Determine the equations of trigonometric graphs | | Platinum LB Platinum TG | $\begin{aligned} & \text { Page 130-131 } \\ & \text { Page 134-136 } \\ & \hline \end{aligned}$ |
| | | Unit 5: Sketching graphs which have a change in period and a horizontal shift | | Platinum LB Platinum TG | Page 132-135
 Page 136-140 |
| REVISION | | | | Platinum LB: Topic Revision Platinum TG: Topic Revision | Page 136-137
 Page 140-146 |
| ASSESSMENTS | | | | Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet | Page 304
 Page 305 |
| ASSESSMENTS | Task 3: Assignment | | | | |
| | Task 4: Test | | | ${ }^{\text {*9 }}$ Navigation Pack: Term 2 Control Test Exemplar | $\begin{aligned} & \text { Page } 41-44 \\ & \text { Page 66-69 } \\ & \hline \end{aligned}$ |

*9 June examination has been replaced with a controlled test. The three weeks normally allocated to June examinations has been removed to create more time for deeper learning and to ensure the topics that were trimmed or removed in the previous year are covered in grade 11. (DBE Circular S13 of 2020, Paragraph 6g)

Term 3

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
TRIGONOMETRY: SINE, COSINE AND AREA RULES (2 WEEKS)	Trigonometry (sine, cosine and area rules)	Unit 1: Proof and application of the sine, cosine and area rules	2 weeks	Platinum LB Platinum TG	$\begin{aligned} & \text { Page 214-222 } \\ & \text { Page 219-225 } \end{aligned}$
		Unit 2: Two-dimensional problems using the sine, cosine and area rules		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 223-231 } \\ & \text { Page 225-233 } \\ & \hline \end{aligned}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision	$\begin{aligned} & \text { Page 232-235 } \\ & \text { Page 233-237 } \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	$\text { Page } 312$ Page 313
MEASUREMENT*10 (2 WEEKS) (extra week to cover grade 10 content)	Volume and surface area of right-prisms and cylinders	Unit 1: Revision of Grade 10 measurement Revise the volume and surface areas of rightprisms and cylinders. Study the effect on volume and surface areas when multiplying any dimension by a constant factor k.	2 weeks	Platinum LB Platinum TG	$\begin{aligned} & \text { Page 176-184 } \\ & \text { Page 193-197 } \end{aligned}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision	$\begin{aligned} & \text { Page 185-187 } \\ & \text { Page 198-200 } \\ & \hline \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	Page 308 Page 309

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
STATISTICS*11 (3 WEEKS) (extra week to cover grade 10 content)	Revision	Revise measures of central tendency in ungrouped data. Measures of central tendency in grouped data: calculation of mean estimate of grouped and ungrouped data and identification of modal interval and interval in which the median lies. Revision of range as a measure of dispersion and extension to include percentiles, quartiles, inter-quartile and semi-interquartile range. Five number summary: maximum, minimum, quartiles and box-and-whisker diagram. Use the statistical summaries (measures of central tendency and dispersion), and graphs to analyse and make meaningful comments on the context associated with the given data.	3 weeks	Platinum TG Navigation Pack: Targeted Worksheet 1	Page 269 Page 23-26 Page 34-35
		Unit 1: Histograms and frequency polygons		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 290-295 \\ & \text { Page } 270-272 \end{aligned}$
		Unit 2: Ogive curves		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 296-300 \\ & \text { Page } 270-272 \end{aligned}$
		Unit 3: Variance and standard deviation of ungrouped data		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 301 \text { - } 305 \\ & \text { Page } 272 \text { - } 273 \end{aligned}$
		Unit 4: Symmetric and skewed data		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 306 \text { - } 307 \\ & \text { Page } 273 \end{aligned}$
		Unit 5: Identification of outliers		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 308-312 \\ & \text { Page 274-275 } \end{aligned}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision Platinum LB: Test Page Platinum TG: Test Memorandum	Page 313-315 Page 275-278 Page 316-317 Page 279-280

[^3]
Term 3

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	Page 318 Page 319
PROBABILITY ${ }^{\star 12}$ (3 WEEKS) (extra week to cover grade 10 content) Cover grade 10 content simultaneously with grade 11.		Unit 1: Addition and complementary rules; dependent and independent events Grade 10 revision: What is probability? Probability Notation	3 weeks Navigation Pack: Term 3 Control Test 2 Exemplar	Platinum LB Platinum TG Navigation Pack: Targeted Worksheet 2	$\begin{aligned} & \text { Page 252-255 } \\ & \text { Page 252-254 } \\ & \text { Page 27-30 } \\ & \text { Page 36-37 } \end{aligned}$
		Unit 2: Venn diagrams Grade 10 revision		Platinum LB Platinum TG	$\begin{aligned} & \text { Page 256-262 } \\ & \text { Page 254-256 } \end{aligned}$
		Unit 4: Contingency tables		Platinum LB Platinum TG	$\begin{aligned} & \text { Page } 269-274 \\ & \text { Page } 258-259 \end{aligned}$
ASSESSMENTS	Task 5: Test Task 6: Test			Navigation Pack: Term 3 Control Test 1 Exemplar	Page 45-47 Page 48-50 Page 70-71 Page 72-74
		TOTAL WEEKS =			

REVISED DBE ANNUAL TEACHING PLAN				NAVIGATION PLAN	
TOPIC	CONTENT SPECIFIC CONCEPTS	UNIT	TIME	LINKS TOPLATINUM SERIES AND PEARSON NAVIGATION PACK	PAGE REFERENCE
PROBABILITY (CONTINUED) (1 WEEK)		Unit 3: Using tree diagrams to solve problems regarding events not necessarily independent Grade 10 revision	1 week	Platinum LB Platinum TG	$\begin{array}{\|l\|} \hline \text { Page 263-268 } \\ \text { Page 256-258 } \end{array}$
REVISION				Platinum LB: Topic Revision Platinum TG: Topic Revision Platinum LB: Test Platinum TG: Test Memorandum	$\begin{aligned} & \text { Page } 275-277 \\ & \text { Page } 259-261 \\ & \text { Page } 278 \\ & \text { Page } 262 \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	$\begin{array}{\|l} \hline \text { Page } 316 \\ \text { Page } 317 \end{array}$
FINANCE, GROWTH AND DECAY*13 (3 WEEKS)	Revision	Use the simple and compound growth formulae to solve problems, including interest, hire purchase, inflation, population growth and other real-life problems. Understand the implication of fluctuating foreign exchange rates (e.g., on the petrol price, imports, exports, overseas travel).	3 weeks	Platinum LB Platinum TG Navigation Pack: Targeted Worksheet 3	Page 236-241 Page 239-241 Page 31- 33 Page 38-39
		Unit 1: Simple and compound decay		Platinum LB Platinum TG	$\begin{array}{\|l\|} \text { Page 236-241 } \\ \text { Page 239-241 } \end{array}$
		Unit 2: The effect of different periods of compound growth and decay		Platinum LB Platinum TG	$\begin{array}{\|l} \text { Page } 242-249 \\ \text { Page 242-246 } \\ \hline \end{array}$
REVISION				Platinum LB: Topic Revision Platinum TG Topic Revision	$\begin{aligned} & \text { Page 250-251 } \\ & \text { Page 247-250 } \end{aligned}$
ASSESSMENTS				Platinum TG: Topic Advanced Target Worksheet Platinum TG: Topic Basic Target Worksheet	Page 314 Page 315
ASSESSMENTS	Task 7: Test Final Examination			Navigation Pack: Term 4 Control Test Exemplar Navigation Pack: Exemplar Examination	Page 51-53 Page 54-65 Page 75-76 Page 77-88
TOTAL WEEKS = 4					

[^4]\[

$$
\begin{aligned}
& \text { Targeted } \\
& \text { Worksheets }
\end{aligned}
$$
\]

Targeted Worksheet 1

TARGETED WORKSHEET	TOPIC IN CAPS
1	Statistics
2	Probability
3	Financial Mathematics

Targeted Worksheet 1

Topic: Statistics: Measures of central tendency and dispersion

Content summary

Grade 10 content (Question 1 and Question 2)

- Revise measures of central tendency in ungrouped data.
- Measures of central tendency in grouped data: calculation of mean estimate of grouped and ungrouped data and identification of modal interval and interval in which the median lies.
- Revision of range as a measure of dispersion and extension to include percentiles, quartiles, interquartile and semi-interquartile range.
- Five number summary (maximum, minimum and quartiles) and box-and-whisker diagram (Question 3).
- Use the statistical summaries (measures of central tendency and dispersion), and graphs to analyse and make meaningful comments on the context associated with the given data.

Grade 11 Content (Question 3 and Question 4)

- Frequency polygons
- Ogives (cumulative frequency curves)
- Variance and standard deviation of ungrouped data
- Symmetric and skewed data
- Identification of outliers

Question 1 and 2 covers Grade 10 content, it tests the learners' ability to calculate measures of central tendency in ungrouped data and grouped data. In Question 2, learners are expected to calculate the mean using the table and answer questions that test understanding.

Question 3 tests the learners' ability to work with ungrouped data; how to draw a box-andwhisker diagram, calculate the mean/range and comment on the skewness of the data. Learners should be able to use a calculator to work out the standard deviation.

Question 4 tests the learners' ability to read and understand an ogive curve.

Targeted Worksheet 1
 Time: 60 minutes

Name:

Surname:

Topic: Statistics: Measures of central tendency and dispersion

This paper consists of 4 questions.

Instructions

Read the following instructions carefully before answering the questions

1. Answer ALL the questions.
2. Clearly show ALL calculations.
3. You may use a non-programmable scientific calculator.
4. Write neatly and legibly.

Question 1

The data set gives the heights in cm of seedlings, 6 weeks after germinating:

29	38	40	33	36	29	40	39	328	29	39	336

Calculate the:
1.1 mean.
1.2 median.
1.3 mode for the data set.
1.4 Which measure of central tendency is the most appropriate to describe the dataset?

Targeted Worksheet 1

Question 2

In a traffic survey, 80 motorists were asked what distance they drove to work daily. The table shows the results.

Distance in km	Frequency	Midpoint	frequency \times midpoint
$0<x \leq 5$	7		
$5<x \leq 10$	8		
$10<x \leq 15$	12		
$15<x \leq 20$	16		
$20<x \leq 25$	12		
$25<x \leq 30$	13		
$30<x \leq 35$	5		
$35<x \leq 40$	4		
$40<x \leq 45$	3		
Total			

2.1 Copy and complete the table.
2.2 Calculate an approximate mean for the data.
2.3 Find the median and modal classes for the data.
2.4 What percentage of the motorists drove
2.4.1 less than or equal to 15 km ?
2.4.2 more than 35 km ?
2.4.3 between 15 km and 35 km daily?

Question 3

The table below shows the marks (out of 80) obtained in a Mathematics test by a class of nine learners.

20	28	36	41	62	69	75	75	80

3.1 Calculate the range of the data.
3.2 Calculate the standard deviation of the data.
3.3 Determine the median of the data.
3.4 Determine the interquartile range of the data.
3.5 Draw a box-and-whisker diagram for the data above.
3.6 Describe the skewness of the data.
3.7 Identify outliers, if any exists, for the above data.
3.8 Calculate the mean of the data.
3.9 Showing calculations, state how many of the numbers lie within one standard deviation of the mean.

Targeted Worksheet 1

Question 4

The graph below shows the monthly maximum temperatures in a town:

4.1 Write down the range of the monthly maximum temperatures.
4.2 Calculate the mean monthly maximum temperature.
4.3 It is predicted that global warming is likely to increase the town's monthly maximum temperature by $4^{\circ} \mathrm{C}$ in December, January and February. The temperature will increase by $1^{\circ} \mathrm{C}$ in the other months of the year. Calculate the new mean for the data, taking into account global warming.

Targeted Worksheet 2

Topic: Probability: Ability to do calculations involving Venn diagrams and probability

Content summary

Grade 10 content

The use of Venn diagrams to solve probability problems, deriving and applying the following for any two events in a sample space S :

- $\quad P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$;
- $\quad A$ and B are mutually exclusive if $P(A$ and $B)=0$;
- $\quad A$ and B are complementary if they are mutually exclusive; and
- if $P(A)+P(B)=1$, then $P(B)=P(\operatorname{not} A)=1-P(A)$

Grade 11 content

Using Venn diagrams as the focus, learners are expected to know:

- the addition rule for mutually exclusive events: $P(A$ or $B)=P(A)+P(B)$
- the complementary rule: $P(\operatorname{not} A)=1-P(A)$
- and the identity: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

The use of Venn diagrams to solve probability problems, deriving and applying formulae for any three events A, B and C in a sample space S.
It is important that learners understand that probability is from 0 to 1 or represented as a percentage.
The probability of an event can be calculated as follows:

- Probability of event $=\frac{\text { number of outcomes in the event }}{\text { total number of outcomes in the experiment (sample space) }}$

Targeted Worksheet 2

Time: 60 minutes

Name:

Surname:

Topic: Probability: Ability to do calculations involving Venn diagrams and probability

This paper consists of 4 questions.

Instructions

Read the following instructions carefully before answering the questions

1. Answer ALL the questions.
2. Clearly show ALL calculations.
3. You may use a non-programmable scientific calculator.
4. Write neatly and legibly.

Question 1

A survey was conducted among Grade 11 learners on the subjects they do at school. The survey revealed the following:

- 8 do all the three subjects of Mathematics, Physics and Accounting.
- 12 do Mathematics and Physics.
- 5 do Physics and Accounting, but not Mathematics.
- $\quad x$ do Mathematics and Accounting, but not Physics.
- 61 do Mathematics.
- 19 do Physics.
- 75 do Accounting.
- 14 do none of the subjects.
1.1 Draw a Venn diagram to illustrate the information above.
1.2 Calculate the value of x.
1.3 Calculate the probability that a learner, chosen randomly, does only ONE of these subjects.

Targeted Worksheet 2

Question 2

The 120 Grade 11 learners at a school have three extramural activities to choose from: hiking, chess and drama. They are allowed to do as many of these activities as they like, so it is possible to do all three, any two or any one activity. They may also choose not to do any extramural activity at all. The following information describes this situation:

- x learners take only drama and chess.
- 32 learners take chess.
- 40 learners take only drama.
- 6 learners take hiking and chess but not drama.
- 17 learners take chess and drama.
- 65 learners take drama.
- 53 learners take hiking.
- 6 learners do not take any extramural activities.
2.1 Draw a Venn diagram to represent the information above.
2.2 Determine how many learners take only drama and chess (i.e., solve for x).
2.3 What is the probability that a learner has chosen at random takes all three extramural activities?
2.4 What is the probability that a learner chosen at random takes drama or hiking?

Question 3

A group of 329 people from the Western Cape speak English, Afrikaans or Xhosa, or combinations of the three languages. The results of a language survey conducted in this group were stored on Larry Loskop's computer, but unfortunately his files were corrupted. The following facts are all that he has left:

- 82 people in the survey speak only English and Afrikaans.
- 8 people speak only Xhosa and Afrikaans.
- 108 people speak only English.
- 34 people speak Xhosa and English.
- 143 people speak Afrikaans.
- 109 people speak Xhosa.

You decide to let the number of people speaking only English and Xhosa be x.
3.1 Help Larry by drawing a Venn diagram to represent the above information.
3.2 Use your Venn diagram to solve for x.
3.3 What is the probability that a person selected at random from the group speaks English,
Afrikaans and Xhosa?

Targeted Worksheet 2

3.4 What is the probability that a person selected at random from the group speaks only one language?
3.5 What is the probability that a person selected at random from the group speaks two languages only?

Question 4

In a survey, a group of 283 workers were asked which mode of transport they use to get to work. The results of the survey are summarised below.

- $\quad x$ workers take a train, a bus and a taxi to get to work.
- 110 workers take a train and a taxi.
- 38 workers take a taxi and a bus.
- 32 workers take a train and a bus but not a taxi.
- 60 get to work by taxi only.
- 110 workers take a bus.
- 172 workers take a train.
4.1 Draw a Venn diagram to represent the information above.
4.2 Determine the number of workers who take a train, a bus and a taxi to work (i.e., x).
4.3 What is the probability that a worker picked from the sample takes a train and a bus to work? Give your answer as a fraction.

4.4 What is the probability that a worker picked from the sample takes a bus but not a train?
Give your answer as a fraction.

Targeted Worksheet 3

Topic: Financial Mathematics: Appreciation and depreciation with change in compounding periods

Content summary

The compound interest formula (reducing-balance formula) is given by:
$A=P(1 \pm i)^{n}$
where:

- A : final value (accumulated amount)
- $\quad P$: initial value (principal value)
- i : interest rate
- n : number of times interest will be added (or number of compounding periods)

The interest rate can be compounded in various intervals as illustrated in the table below:

Interval	Number of times in a year
annually	once a year
half-yearly or semi-annually	twice a year
quarterly	four times a year
monthly	twelve times a year

Questions 1 and 2:

- Determine the value of the accumulated amount/final amount (A).
- Determine the value of the principal amount/initial value (P).
- Determine the interest rate (r).

Questions 3 and 4:

- Effect of different compounding periods.
- Timeline questions.
- Nominal and effective interest rates.

Targeted Worksheet 3

Time: 60 minutes

Name:

Surname:

Topic: Financial Mathematics: Appreciation and depreciation with change in compounding periods

This paper consists of 4 questions.

Instructions

Read the following instructions carefully before answering the questions

1. Answer ALL the questions.
2. Clearly show ALL calculations.
3. You may use a non-programmable scientific calculator.
4. Write neatly and legibly.

Question 1

1.1 Determining the investment value (accumulated amount):

Jonathan deposits R3 000 into a bank account. The bank offers an interest rate of 15% p.a. compounded monthly. Calculate the amount that Jonathan will withdraw after 6 years.
1.2 Determining the principal amount (initial amount):

A car has a current value of R250 000. If the value depreciated at 13% p.a. compounded quarterly, calculate the initial value of the car 10 years ago based on a reducing balance method (round off to the nearest rand).

Question 2

2.1 Determining the nominal interest rate (r) :

Sipho invested R15 000 in a banking account. After 5 years he withdraws R28 000.
Calculate the interest rate (rounded to two decimal places) per annum if it was compounded half-yearly.

Targeted Worksheet 3

Question 3

3.1 R2 650 was invested in a fund paying $i \%$ p.a., compounded monthly. After 18 months the fund had grown to a value of R3 004,53. Calculate the interest rate.
3.2 Kai bought a new car 4 years ago. He now wants to upgrade to the latest model. Four years ago he invested R60 000 for 4 years at an interest rate of 9,6\% p.a., compounded monthly. He will use the investment to pay cash for the new car and use the old car as a trade-in. Calculate the value of his current car if he paid R160 000 for it and it depreciated at 12% p.a. on a reducing balance. Round off the answer to the nearest rand.
3.3 Assuming inflation over the 4 years is determined at 9% p.a., calculate the current price of a similar new car. Round off the answer to the nearest rand.
3.4 The dealer offers Kai a 12% discount on the price of the new car. Calculate how much cash he must still find to pay for the new car after trading in the old car and withdrawing the investment.
3.5 An amount of R25 000 is invested at 7,6\% p.a. compounded monthly. After $2 \frac{1}{2}$ years, R10 000 is withdrawn and the interest changes to $8,2 \%$ compounded quarterly. Calculate how much will be in the account at the end of 5 years.

Question 4

4.1 Thabo paid R12 000 towards a loan, for 4 years from the date on which the loan was granted. Two years later, he paid off the remaining R8 000. The interest rate was 19% p.a., compounded quarterly for the first 4 years, and then changed to 21% p.a., compounded annually, for the remaining 2 years. Determine the value of the loan that Thabo obtained from the bank.
4.2 Asanda inherited R36 000. He invested the money in a savings account paying 9\% interest p.a., compounded monthly for the first two years. He then withdrew R10 000 for his studies. At the same time, the interest rate changed to 8,8\% p.a., compounded quarterly. Three years later, he deposited a further R2 500 and left his investment to grow for a further four years at the same interest rate. Calculate how much was left in the account at the end of nine years.
4.3 Mrs Pillay deposited R240 000 into a fixed-deposit savings account for 5 years. The accumulated amount in the savings account at the end of the 5 -year period is R390 000. Calculate the interest rate paid by the bank in each of the following situations:
4.3.1 the effective annual interest rate.
4.3.2 the nominal interest rate per annum if the interest rate was compounded monthly.
4.3.3 the nominal interest rate per annum if the interest was compounded daily.

Topic: Statistics
1.1 mean $=\frac{480}{14}=34,29 \Omega \checkmark$
1.2 median $=\frac{33+36}{2}=34,5$
1.3 mode $=29 \boldsymbol{\checkmark}$
1.4 mean or median are both appropriate $\checkmark \checkmark$
2.1

Distance in km	Frequency	Midpoint	frequency \times midpoint
$0<x \leq 5$	7	2,5	17,5
$5<x \leq 10$	8	7,5	60
$10<x \leq 15$	12	12,5	150
$15<x \leq 20$	16	17,5	280
$20<x \leq 25$	12	22,5	270
$25<x \leq 30$	13	27,5	357,5
$30<x \leq 35$	5	32,5	162,5
$35<x \leq 40$	4	37,5	150
$40<x \leq 45$	3	42,5	127,5
Total	$80 \checkmark$	\checkmark	$1575 \checkmark \checkmark$

2.2 mean $=\frac{1575}{80}=19,69 \boldsymbol{\checkmark} \mathbf{J}$
2.3 median $=$ occurs between $(40)^{\text {th }}$ and $(41)^{\text {st }}$ piece of data. So, the median class interval is $15<x \leq 20 \checkmark \checkmark$
Modal class interval $=$ highest frequency
$15<x \leq 20 \checkmark \checkmark$
2.4.1 $\%<15=\frac{27}{80} \times 100=33,75 \% \Omega \checkmark$
2.4.2 $\%>35=\frac{7}{80} \times 100=8,75 \% \checkmark \checkmark$
2.4.3 $\% 15<x \leq 35=\frac{46}{80} \times 100=57,5 \% \checkmark \checkmark$
$3.1 \quad 80-20=60 \checkmark \checkmark$
3.2 21,5 $\boldsymbol{\checkmark}$
3.362 ,
$3.4 \quad Q_{2}=Q_{3}-Q_{1}$
$Q_{1}=\frac{28+36}{2}=32 \boldsymbol{\checkmark}$
$Q_{3}=\frac{75+75}{2}=75 \checkmark$
$Q_{2}=75-32=43 \boldsymbol{J}$

Targeted Worksheet 1 Answers

3.6 Skewed to the left. \checkmark
3.7 There are no outliers. \checkmark
3.8 mean $=\frac{486}{9}=54 \checkmark \mathbf{J}$
3.9 Numbers between $32,5 \boldsymbol{\checkmark}$ and $75,5 \boldsymbol{\checkmark}: 6$ numbers. $\boldsymbol{\checkmark}$
4.1 Range: $26^{\circ} \mathrm{C}-4^{\circ} \mathrm{C}=22^{\circ} \mathrm{C} \checkmark \checkmark$
4.2 Mean $=\frac{(4+5+8+13+19+22+25+26+23+17+14+7)}{12}=\frac{183}{12}=15,25^{\circ} \mathrm{C} \boldsymbol{\checkmark}$
4.3 Increase in mean $=\frac{(3 \times 4)+(9 \times 1)}{12}=1,75^{\circ} \mathrm{C}$ per month $\boldsymbol{\checkmark} \boldsymbol{\checkmark}$

New mean $=17^{\circ} \mathrm{C} \checkmark$

Topic: Probability
1.1

Mathematics: $m+x+8+4=61$

$$
m=49-x \checkmark
$$

Accounts: $x+8+5+a=75$

$$
\begin{equation*}
a=62-x \checkmark \tag{4}
\end{equation*}
$$

$1.249-x+4+8+x+2+5+62-x+14=100 \checkmark$

$$
\begin{equation*}
x=44 \checkmark \tag{2}
\end{equation*}
$$

$1.318+2+5=25$
Probability $=\frac{25}{100}=\frac{1}{4} \checkmark \checkmark$
[8]
2.1

Chess: $6+17-x+x+c=32$

$$
c=9 \checkmark
$$

Drama: $m+17-x+x+40=65$

$$
m=8 \checkmark
$$

Hiking: $h+6+17-x+8=53$

$$
\begin{equation*}
h=22+x \checkmark \tag{6}
\end{equation*}
$$

$2.222+x+6+9+17-x+x+40+8+6=120 \checkmark \checkmark$

$$
\begin{equation*}
x=120-108=12 \tag{3}
\end{equation*}
$$

2.3 $\quad P$ (all three activities) $=\frac{5}{120}=\frac{1}{24} \checkmark \checkmark$
2.4 $P($ drama or hiking $)=P(D)+P(H)-P(D$ and $H)$
$P($ drama or hiking $)=\frac{65}{120}+\frac{53}{120}-\frac{13}{120}=\frac{105}{120} \checkmark \checkmark$
$P($ drama or hiking $)=\frac{7}{8} \checkmark$

Targeted Worksheet 2 Answers

3.1

Afrikaans: $A+82+34-x+8=143$

$$
A=19+x \checkmark
$$

Xhosa: $X+x+34-x+8=109$

$$
\begin{equation*}
X=67 \checkmark \tag{6}
\end{equation*}
$$

$3.2108+82+34-x+x+8+19+x+67=329 \checkmark \checkmark$

$$
\begin{equation*}
x=11 \checkmark \tag{3}
\end{equation*}
$$

3.3 $P($ English, Afrikaans and Xhosa $)=\frac{34-11}{329}=\frac{23}{329} \checkmark \checkmark$
3.4 $P($ speaks only one language $)=\frac{108+67+30}{329}=\frac{205}{329} \checkmark \checkmark$
3.5 $\quad P$ (speaks two languages only) $=\frac{82+8+11}{329}=\frac{101}{329} \checkmark \checkmark$
4.1

Bus: $32+x+38-x+B=110$

$$
B=40 \checkmark
$$

Train: $T+32+x+110-x=172$

$$
\begin{equation*}
T=30 \downarrow \tag{6}
\end{equation*}
$$

$4.230+32+x+110-x+60+38-x+40=283 \checkmark \checkmark$

$$
\begin{align*}
310-283 & =x \\
x & =27 \tag{3}
\end{align*}
$$

4.3 $\quad P$ (train and a bus) $=\frac{32+27}{283}=\frac{59}{283} \checkmark \checkmark$
4.4 $\quad P($ bus but not a train $)=\frac{40+38-27}{283}=\frac{51}{283} \checkmark \checkmark$

Topic: Financial Mathematics
$1.1 \quad A=3000\left(1+\frac{11,5}{12 \times 100}\right)^{12 \times 6} \boldsymbol{J}$
$A=$ R5 997,06 \downarrow
$1.2 \quad 250000=P\left(1-\frac{13}{4 \times 100}\right)^{4 \times 10} \checkmark \checkmark$

$$
P=\frac{250000}{\left(1-\frac{13}{400}\right)^{40}}
$$

1.3 $\mathrm{P}=\mathrm{R} 937348 \checkmark$
$2.128000=15000(1+i)^{2 \times 5} \checkmark \checkmark$

$$
\begin{align*}
\frac{28000}{15000} & =(1+i)^{10} \\
1+i & =\sqrt[10]{\frac{28000}{15000}} \\
i & =\sqrt[10]{\frac{28000}{15000}}-1 \\
i & =0,0644044 \\
\frac{r}{2 \times 100} & =0,0644044 \checkmark \\
r & =0,0644044 \times 200 \\
r & =12,88 \% \tag{5}
\end{align*}
$$

3.1

$$
\begin{align*}
3004,53 & =2650\left(1+\frac{i}{12}\right)^{18} \\
\sqrt[18]{3004,53 \div 2650} & =1+\frac{i}{12} \\
i & =0,084 \tag{5}
\end{align*}
$$

The interest rate is $8,4 \%$. \checkmark
$3.260000(1-0,12)^{4} \boldsymbol{\checkmark}=$ R95 $951 \checkmark$
$3.360000(1+0,09)^{4} \checkmark=$ R225 $853 \boldsymbol{J}$
3.4 Price after discount $=225853(0,88)=$ R198 750,64 $\boldsymbol{\checkmark}$

Investment $=60000\left(1+\frac{0,096}{12}\right)^{48} \checkmark=$ R87 954,24 $\boldsymbol{\checkmark}$
He still needs R198 750,64-95951-87954,24 = R14 845,40.
$3.5\left[25000\left(1+\frac{0,076}{12}\right)^{30} \checkmark-10000\right] \checkmark\left(1+\frac{0,082}{4}\right)^{10} \checkmark=$ R24 760,75 \checkmark
4.1 $\quad P v=A\left(1+\frac{i}{m}\right)^{-m n}$
$P v=8000(1+0,21)^{-2} \boldsymbol{\checkmark}\left(1+\frac{0,19}{4}\right)^{-16} \checkmark+12000 \checkmark\left(1+\frac{0,19}{4}\right)^{-16} \checkmark$
$P v=$ R $8311,55 \quad \checkmark$

Targeted Worksheet 3 Answers

4.2 Amount of money left over

$$
\begin{align*}
& =36000\left(1+\frac{0,09}{12}\right)^{24} \checkmark\left(1+\frac{0,088}{4}\right)^{28} \checkmark 10000 \checkmark\left(1+\frac{0,088}{4}\right)^{28} \checkmark+2500 \checkmark\left(1+\frac{0,088}{4}\right)^{16} \checkmark \\
& =\text { R64 364,66 } \tag{7}
\end{align*}
$$

4.3 Using $A=P(1+i)^{n} \checkmark$ to calculate the effective interest rate.

$$
\begin{align*}
\mathrm{R} 390000 & =\mathrm{R} 240000(1+i)^{5} \checkmark \\
\sqrt[5]{\frac{390000}{240000}}-1 & =i \checkmark \\
i & =10,19 \% \boldsymbol{l} \tag{3}
\end{align*}
$$

4.4 Using: $1+i_{\text {eff }}=\left(1+\frac{i_{\text {nom }}}{m}\right)^{m}$,

$$
\begin{align*}
1+10,19 \% & =\left(1+\frac{i_{\text {nom }}}{12}\right)^{12} \\
12(\sqrt[12]{1+10,19 \%}-1) & =i_{\text {nom }} \\
i_{\text {nom }} & =9,74 \% \tag{3}
\end{align*}
$$

4.5 Using: $1+i_{\text {eff }}=\left(1+\frac{i_{\text {nom }}}{m}\right)^{m}$

$$
\begin{align*}
1+10,19 \% & =\left(1+\frac{i_{\text {nom }}}{365}\right)^{365} \checkmark \\
365(\sqrt[365]{1+10,19 \%}-1) & =i_{\text {nom }} \checkmark \\
i_{\text {nom }} & =9,70 \% \tag{3}
\end{align*}
$$

Exemplar
Assessments

Exemplar Assessments

Time: 1,5 hours

Name:

Surname:

Term 2: Control Test

Instructions

Read the following instructions carefully before answering the questions.

1. This question paper consists of 7 questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Write neatly and legibly.

Question 1

1.1 Given the following quadratic sequence: $-2 ; 0 ; 3 ; 7 ; \ldots$
1.1.1 Write down the value of the next term in the sequence.
1.1.2 Determine an expression for the nth term of this sequence.
1.1.3 Which term in the sequence is equal to 322 ?
1.2 Calculate the value of x in the following quadratic pattern: $15 ; 10 ; 7 ; x ; 7 ; \ldots$

Exemplar Assessments

Question 2

2.1 Triangle $A B C$ is shown in the figure below.

2.1.1 If $B C=A B$, determine the value(s) of k.
2.1.2 Calculate the gradient of BC if $k=7$.
2.1.3 Prove that $\triangle A B C$ is a right-angled triangle if $k=7$.
2.1.4 Determine the area of $\triangle A B C$.
2.2 MNOP is a quadrilateral. The angle of inclination of OM is α and the angle of inclination of ON is θ.

2.2.1 Determine the coordinates of R, the midpoint of $O M$.
2.2.2 If OM and PN bisect each other, find the coordinates of N .
2.2.3 Determine the equation of the line ON .
2.2.4 Calculate the size of MÔN.
2.2.5 Show that $\mathrm{PM}=\mathrm{ON}$.
2.2.6 If OMNQ is a parallelogram, determine the coordinates of Q .

Exemplar Assessments

Question 3

3.1 The sketch below illustrates the graphs of $f(x)=x^{2}-4 x+3$ and $g(x)=x-1$.

3.1.1 Determine the coordinates of A and B.
3.1.2 Find the length of $A B$.
3.1.3 Find the coordinates of C and D.
3.1.4 Solve the equation $x^{2}-5 x=-4$. (Note: This is the solution for $f(x)=g(x)$)
3.1.5 Find the coordinates of the turning point E .
3.1.6 For what values of x is $x^{2}-4 x+3>x-1$?
3.1.7 For what values of x is $f(x)<0$?

Question 4

4.1 The graph of $f(x)=a^{x}$ is drawn below with point $\mathrm{Q}(-3 ; 8)$.

4.1.1 Determine the value of a.
4.1.2 Write down the coordinates of P.
4.1.3 If $g(x)$ is the reflection of $f(x)$ in the x-axis, determine the equation of $g(x)$
4.1.4 What would the equation of $f(x)$ become if the x-axis is moved down 2 units?

Question 5

5.1 Given the function: $f(x)=\frac{3}{x+2}-1$. Sketch the graph of f, showing the coordinates of the intercepts.

Question 6

6.1 The graph of $f(x)=a \cdot \sin x$ is drawn in the sketch below for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$.

6.1.1 Determine the value of a.
6.1.2 Write down the amplitude of f.
6.1.3 Write down the period of g if $g(x)=\frac{f(x)}{2}$.

Question 7

7.1 Determine the general solution of x, if $9 \sin x=5 \cos ^{2} x+3 \sin ^{2} x$.

Exemplar Assessments

Time: 1 hour

Name:

Surname:

Term 3: Control Test 1

Instructions

Read the following instructions carefully before answering the questions.

1. This question paper consists of 3 questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Write neatly and legibly.

Question 1

1.1 In the diagram below, the leaning tower of Pisa $A B$ is shown. A tourist determines that the angle of elevation of the top of the building increases from 38° to $48,08^{\circ}$ after walking 20 metres towards the tower from point C to point D. He also determines that point D is 50 metres from the foot of the tower. BDC is horizontal and AB is not vertical.

1.1.1 Explain why $\angle D A C=10,08^{\circ}$.
1.1.2 Determine the straight-line distance AD. Give your answer correct to
two decimal digits.
1.1.3 Determine the length of the tower $A B$ correct to two decimal digits.

Exemplar Assessments

1.2 In the figure below, $\mathrm{BC}=z, \mathrm{~A} \widehat{\mathrm{~EB}}=x$ and $\mathrm{BEC}=y$. Show that $\mathrm{AC}=\frac{z \sin (x+y)}{\cos x \sin y}$.

Question 2

2.1 In the figure below, acute-angled $\triangle A B C$ is drawn having C at the origin.

Prove that $c^{2}=a^{2}+b^{2}-2 a b \cos C$.
2.2 The diagram below represents Mr Nu's vegetable garden. $\angle \mathrm{K}=20^{\circ}$; $\angle \mathrm{M}=100^{\circ}$ and $\mathrm{KM}=30 \mathrm{~m}$.

2.2.1 Calculate the length of the fence that Mr Nu can use to fence his garden.
2.2.2 How big is Mr Nu's vegetable garden?
2.2.3 If the garden was rectangular shaped, determine the length of the garden if it has a width of 13 m .

Exemplar Assessments

Question 3

3.1.1 Calculate the volume and total surface area of a sphere given the length of the radius $=3,5 \mathrm{~cm}$. Write the answer correct to 5 decimal places.
(Volume of a sphere $=\frac{4}{3} \pi r^{3}$ and total surface area $=4 \pi r^{2}$.)

3.1.2 If the radius is doubled, calculate the volume and total surface area of the larger sphere.
3.2 Use the figure below to answer the questions that follow.

3.2.1 Calculate the volume of the triangular prism.
3.2.2 Calculate the total surface area of the prism.
3.3 A cylindrical water tank has a volume of $260 \mathrm{~cm}^{3}$ with a height of $h \mathrm{~cm}$ and a radius of $r \mathrm{~cm}$.

Express h in terms of r and hence determine the value of h if $r=3,5 \mathrm{~cm}$.

Exemplar Assessments

Time: 1 hour

Name:

Surname:

Term 3: Control Test 2

Instructions

Read the following instructions carefully before answering the questions.

1. This question paper consists of 4 questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Write neatly and legibly.

Question 1

1.1 A mathematics test results of 100 Grade 11 learners at a school are summarised in the table below:

$\%$ obtained	Number of learners
$0 \leq x<20$	2
$20 \leq x<30$	5
$30 \leq x<40$	18
$40 \leq x<50$	22
$50 \leq x<60$	18
$60 \leq x<70$	13
$70 \leq x<80$	12
$80 \leq x<100$	10

1.1.1 Calculate the approximate mean mark for the test.
1.1.2 Identify the interval in which the median lies.
1.1.3 Which is the modal interval?

Exemplar Assessments

1.2 A traffic department set up a camera to record the speed of cars travelling into the town. The findings are shown in the table below:

Speed km/h	Number of cars (frequency)	Cumulative frequency
$60 \leq x<70$	43	
$70 \leq x<80$	69	
$80 \leq x<90$	110	
$90 \leq x<100$	49	
$100 \leq x<110$	20	
$110 \leq x<120$	9	

1.2.1. Copy and complete this table.
1.2.2 Draw a cumulative frequency graph illustrating this data.
1.2.3 Indicate on the graph where the median can be read.
1.2.4 Calculate the inter-quartile range for this set of data.

Question 2

Consider the dataset below.
147; 164; 172; 162; 157; 164; 172; 162; 166; 159; 182; 171; 163; 145; 188; 163; 164
2.1 Arrange the data into a stem and leaf diagram.
2.2 Use the diagram to determine the:
2.2.1 mean.
2.2.2 median.
2.2.3 mode.

Exemplar Assessments

Question 3

In a survey, a group of 283 workers were asked which mode of transport they use to get to work. The results of the survey are summarised below.

- x workers take a train, a bus and a taxi to get to work.
- 110 workers take a train and a taxi.
- 38 workers take a taxi and a bus.
- 32 workers take a train and a bus but not a taxi.
- 60 get to work by taxi only.
- 110 workers take a bus.
- 172 workers take a train.
3.1 Draw a Venn diagram to represent the information above.
3.2 Determine the number of workers who take a train, a bus and a taxi to work (i.e., x).
3.3 What is the probability that a worker picked from the sample takes a train and a bus to work? Give your answer as a fraction.
3.4 What is the probability that a worker picked from the sample takes a bus but not a train? Give your answer as a fraction.

Question 4

4.1 Given two events, A and $B: P\left(B^{\prime}\right)=0,29 ; P(B)=3 P(A)$ and $P(A$ or $B)=0,88$. Are events A and B mutually exclusive? Justify your answer with appropriate calculations.
4.2 A bag contains 8 white balls, 6 black balls and 7 green balls. A ball is drawn at random and not replaced. A second ball is drawn.
4.2.1 Draw a tree diagram to represent all the probabilities.
4.2.2 Determine the probability that both balls are green.
4.2.3 Determine the probability that the two balls are white and green in any order.

Exemplar Assessments

Time: 1 hour

Name:

Surname:

Term 4: Control Test

Instructions

Read the following instructions carefully before answering the questions.

1. This question paper consists of 4 questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Write neatly and legibly.

Question 1

1.1 Given events A and $B: P(A)=0,7 ; P(B)=0,3$ and $P(A$ and $B)=0,2$.
1.1.1 Are events A and B mutually exclusive? Explain your answer.
1.1.2 Are events A and B independent? Explain your answer.
1.2 Rudi sometimes gets a lift to and from school. When he does not get a lift, he walks. The probability that he gets a lift to school is 0,4 . The probability that he walks home from school is 0,7 . Getting to school and getting home from school are independent events.
1.2.1 Draw a tree diagram to represent the information. Write all the probabilities on the branches.
1.2.2 Calculate the probability that Rudi walks at least one way.

Exemplar Assessments

Question 2

The table below shows data for learners' favourite sport at a high school.

	Boys	Girls	Total
Soccer	407	43	450
No favourite sport	72	109	181
Netball	29	384	413
Athletics	A	220	C
Rugby	316	9	325
Other	63	150	213
Total	1053	B	1968

2.1 Calculate the values of A, B and C.
2.2 One of these learners is randomly selected. What is the probability that this learner prefers netball and is a girl?
2.3 Show with calculations whether the events of preferring netball and being a girl are independent or NOT.

Question 3

3.1 William opened a savings account with R10 000. Two years later he deposited a further R4 000 and 5 years after the account was opened, he deposited another R3 000. If the interest was calculated at 8,6\% annually, calculate how much money he had in his savings account at the end of 8 years.
3.2 Sente wants to buy a new laptop that costs R9 000. He pays a 15% deposit and uses a hire purchase loan for the balance. Calculate his monthly payments if the loan is for 2 years at an annual interest rate of 14%.
3.3 A business buys machinery for R2,2 million. Depreciation is calculated at 17,5\% p.a., calculated on a reducing balance.
3.3.1 Calculate the book value of the machinery after 4 years.
3.3.2 Calculate what it will cost to replace the machinery after 4 years at an expected inflation rate of 6,5\% p.a. Write the answer to the nearest rand.

Exemplar Assessments

Question 4

4.1 R8 000 is invested for 5 years at an interest rate of 17% p.a., compounded monthly.
4.1.1 Determine the value of the investment at the end of the 5 years using the nominal interest rate given.
4.1.2 Convert the nominal interest rate to an effective interest rate.
4.1.3 Use the effective interest rate to calculate the value of the investment. Comment on your solution and that in 4.1.1.
4.2 Zakhele inherits R10 000 and invests it in an account for 8 years. If the interest rate for the first 4 years is $8,4 \%$ p.a., compounded half-yearly, and then rises to $9,2 \%$ p.a., compounded monthly for the remainder of the investment, calculate how much interest he has accrued on his inheritance.
4.3 Sipho invested R15 000 in a banking account. After 5 years he withdraws R28 000. Calculate the interest rate (rounded to two decimal places) per annum if it was compounded half-yearly.

Exemplar Assessments

Time: 3 hours

Name:

Surname:

Term 4: Final Examination Paper 1

Instructions

Read the following instructions carefully before answering the questions.

1. This question paper consists of 10 questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Write neatly and legibly.

Question 1

1.1 Solve for x.

$$
\begin{equation*}
\text { 1.1.1 } \quad x(2 x+1)=0 \tag{2}
\end{equation*}
$$

1.1.2 $3 x^{2}-2 x=4$ (Correct to TWO decimal places.)
1.1.3 $\quad \sqrt{x-1}+1=x$
1.1.4 $\quad x^{2}-3 x \geq 10$
1.1.5 $\quad 3^{x+3}-3^{x+2}=48$
1.1.6 $\quad 2^{x+1}-9 \cdot 2^{x}+4=0$
1.2 Solve for x and y simultaneously:
$2 x=y+7$ and $x^{2}+x y+y^{2}=2$
1.3 The solutions to the quadratic equation are given by $x=-\frac{2 \pm \sqrt{2 p+5}}{7}$.

For which values of p will this equation have:
1.3.1 two equal solutions?
(2)
1.3.2 no real roots?

Exemplar Assessments

Question 2

2.1 Simplify the following, without using a calculator:
2.1.1 $\quad\left(\frac{27 x^{7}}{x}\right)^{\frac{2}{3}}$
2.1.2 $\quad \frac{\sqrt{48}-\sqrt{32}}{\sqrt{12}-\sqrt{8}}$
2.2 Without the use of a calculator, find the value of:
$\sqrt{10002^{2}-10000 \times 10004}$

Question 3

3.1 Given the linear pattern: 42; 53; 64; ...; 70
3.1.1 Determine the formula for the nth term of the pattern.
3.1.2 Calculate the value of T_{10}.
3.1.3 Determine the number of terms in the pattern.
3.2 Given the sequence: $\frac{4}{3} ; \frac{7}{6} ; \frac{10}{9} ; \frac{13}{12} ; \ldots$
3.2.1 Write down the next two terms.
3.2.2 Write down an expression for the nth term of the sequence.

Question 4

4.1 Given the linear pattern: 17; 13; 9 ; ...
4.1.1 Write down the fourth term.
4.1.2 Determine a formula for the general term of the pattern.
4.1.3 Which term of the pattern will have a value of -83 ?
4.1.4 If this linear pattern forms the first difference of a quadratic pattern $Q_{n^{\prime}}$ determine the first difference between Q_{470} and Q_{469}.
4.2 A quadratic pattern has a constant second difference of 2 and $T_{5}=T_{17}=29$.

Determine an expression for the nth term in the form $T_{n}=a n^{2}+b n+c$.

Exemplar Assessments

Question 5

The straight line graph $f(x)=-x-5$ and the parabola $g(x)=a(x-3)(x+1)$ are shown in the sketch below. Points A, B and C are the intercepts of g with the axes. D and E are the intercepts of f with the axes. FG is parallel to the y-axis and T is the turning point of the parabola

5.1 If the coordinates of the turning point T are $(1 ;-4)$, calculate the value of a in the equation $g(x)=a(x-3)(x+1)$.
5.2 Determine the nature of the roots of $-x-5=x^{2}-2 x-3$.
5.3 If the x-coordinate of the point G is $-\frac{1}{2}$, calculate the length of FG .
5.4 Calculate the length of EB.
5.5 For which value(s) of x is $g(x)$ decreasing?
5.6 Write down the domain and range of $g(x)$.
5.7 Write down the equation of $h(x)$, the reflection of $f(x)$ in the x-axis.

Exemplar Assessments

Question 6

The sketch below shows the graphs $f(x)=\frac{k}{x+p}+q$ and $g(x)=m x+c . \mathrm{B}(0 ;-3)$ is the y-intercept of f and g.

6.1 Determine the values of k, p and q.
6.2 Write down the equations of the asymptotes of the hyperbola.
6.3 Calculate the values of m and c in the equation $g(x)=m x+c$.
6.4 Write down the equation for the other axis of symmetry of $f(x)$.
6.5 Calculate the length of $C B$ and leave your answer in surd form.

Question 7

Given $g(x)=3^{x}$ and $f(x)=-3^{x+1}+1$.
7.1 Sketch the following graphs of g and f on the same set of axes. Show all intercepts and asymptotes.
7.2 From the sketch in 1 , what is the range of:
7.2.1 $g(x)$?
7.2.2 $-f(x)$?
7.3 Give the equation of $h(x)$, the reflection of $g(x)$ in the y-axis.

Exemplar Assessments

Question 8

8.1 A car is worth R140 000 now. If it depreciates at a rate of 14% p.a. on a straight line depreciation, calculate the value of the car after 4 years.
8.2 Zakhele inherits R10 000 and invests it in an account for 8 years. If the interest rate for the first years is $8,4 \%$ p.a., compounded half-yearly, and then rises to 9,2\% p.a., compounded monthly for the remainder of the investment, calculate how much interest he has accrued on his inheritance.
8.3 Samuel invests R14 500 at 8,5\% p.a., compounded monthly for 3 years.
8.3.1 Calculate the effective interest rate correct to two decimal places.
8.3.2 If he withdraws R5 000 after 3 years and the interest rate drops to 7,8\% p.a., compounded quarterly, calculate the total amount of the investment after 2 more years.

Question 9

A survey was conducted amongst 75 learners at a school to establish their involvement in three sport activities, namely Soccer, Netball and Volleyball. The results were as follows:

- 35 learners play Soccer (S).
- 42 learners play Netball (N).
- 28 learners play Volleyball (V).
- 15 learners play soccer and netball.
- 14 learners play netball and volleyball.
- 13 learners play volleyball and soccer.
- 7 learners were not involved in any of the sport.
9.1 Display this information in a Venn diagram. Calculate how many learners were involved in all the sports.
9.2 Determine how many learners were only involved in soccer.
9.3 A learner is randomly chosen from those surveyed. Find the probability that:
9.3.1 The learner is involved in netball only.
9.3.2 The learner is involved in netball given that the learner is involved in soccer.
9.3.3 The learners that were not involved in volleyball.

Question 10

10.1 Given two events, A and $B: P(A)=\frac{2}{3} ; P(B)=\frac{3}{5}$ and $P(A \cap B)=\frac{4}{5}$. Determine $P(A$ and $B)$.
10.2 A bag contains 6 blue, 5 red and 9 white marbles. A marble is drawn and replaced, and another marble is then drawn. Draw a tree diagram to represent this information and use it to determine the probability that both marbles are white.

Exemplar Assessments

Time: 3 hours

Name:

Surname:

Term 4: Final Examination Paper 2

Instructions

Read the following instructions carefully before answering the questions.

1. This question paper consists of 9 questions.
2. Answer ALL the questions.
3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
4. Answers only will NOT necessarily be awarded full marks.
5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Write neatly and legibly.

Question 1

The table below shows the number of cans of food collected by 9 classes during a charity drive.

5	8	15	20	25	27	31	36	75

1.1 Calculate the range of the data.
1.2 Calculate the standard deviation of the data.
1.3 Determine the median of the data.
1.4 Determine the interquartile range of the data.
1.5 Draw a box-and-whisker diagram for the data above.
1.6 Describe the skewness of the data.
1.7 Identify outliers, if any exist, for the above data.

Exemplar Assessments

Question 2

The individual masses in kg of 30 rugby players are given below:
86; 92; 76; 88; 93; 87; 89; 79; 101; 93; 91; 82; 85; 84; 96; 100; 78; 80; 84; 90; 97; 82; 85; 72; 79; 90; 101; 77; 65; 93

Mass (kg)	Frequency	Cumulative Frequency
$60 \leq x<70$		
$70 \leq x<80$		
$80 \leq x<90$		
$90 \leq x<100$		
$100 \leq x<110$		

2.1 Complete the table.
2.2 Draw an ogive (cumulative frequency curve) to represent the information in the table.
2.3 Calculate the mean mass of the rugby players.
2.4 Determine how many rugby players have masses within one standard deviation of the mean.

Question 3

3.1 The points $D(-1 ; 2), E(4 ;-2)$ and $F(-5 ;-3)$ are three vertices of triangle $D E F$. Determine: 3.1.1 the gradients of $D F$ and $D E$.
3.1.2 whether $D F$ and $D E$ are perpendicular to each other.
3.1.3 the equation of the line $D E$.
3.1.4 the y-coordinate of point G on DE with x-coordinate 6 .
3.1.5 the lengths of $D F$ and $D E$.
3.1.6 the area of triangle DEF.

Exemplar Assessments

3.2 Trapezium PQRS is shown in the figure below.

Determine:
3.2.1 the value of x if the length $R S$ is 15 units.
3.2.2 the coordinates of T , the midpoint of RS.
3.2.3 the gradient of PT.
3.2.4 the value of y if $\mathrm{QR} \perp \mathrm{RS}$.
3.2.5 whether QR||PT or not.

Question 4

4.1 Simplify:
4.1.1 $\frac{\sin 100^{\circ} \cdot \tan ^{2} 225^{\circ}}{\tan 30^{\circ} \cdot \cos 370^{\circ} \cdot \sin 120^{\circ}}$
4.1.2 $\frac{\sin \left(90^{\circ}+x\right) \cos ^{2}\left(90^{\circ}-x\right)}{\cos \left(180^{\circ}-x\right) \sin \left(x-180^{\circ}\right) \tan \left(180^{\circ}+x\right) \cos \left(-x+360^{\circ}\right)}$
4.2 If $\sin 32^{\circ}=k$, determine the following in terms of k :
4.2.1 $\cos 58^{\circ}$
4.2.2 $\sin 212^{\circ}$
4.2.3 $\tan 32^{\circ}$
4.3 Prove: $\frac{1-\sin \theta}{1+\sin \theta}=\left(\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}\right)^{2}$
4.4 Given the identity: $\frac{\cos x}{1+\sin x}+\tan x=\frac{1}{\cos x}$

Prove the identity.
For which values of x is the identity undefined?
4.5 Solve: $\sin \left(x+10^{\circ}\right)-\cos \left(x-30^{\circ}\right)=0$ for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$.

Question 5

The graph $f(x)=a \cdot \sin x$ and $g(x)=\tan b x$ are shown in the sketch below for $x \in\left[0^{\circ} ; 360^{\circ}\right]$

5.1 Determine the values of a and b.
5.2 Write down the coordinates of P and Q .
5.3 For which values of x is $f(x) \leq g(x)$?
5.4 Write down the equation of the asymptote of g.

Question 6

Use the figure below to answer the questions that follow.

6.1 Determine the length of $C D$.
6.2 Determine the length of AD.
6.3 Calculate the area of $A B C D$.

Exemplar Assessments

Question 7

7.1 Use the figure below to prove the theorem that states:

The line drawn from the centre of a circle perpendicular to a chord bisects the chord.
7.2 $A B$ is a chord in circle, centre $O . O C$ is perpendicular to $A B$.

If $A B=10 \mathrm{~cm}$ and $O A=13 \mathrm{~cm}$, calculate the length of $D C$.
7.3 AP is a diameter of circle, centre O. Chord $B C$ bisects $D \widehat{C} P$ and $P A \perp B C$.

Find five angles equal to $B \widehat{C} P$. Give reasons for each answer.

Question 8

Given circle with centre O and points D, E, F and G points on the circumference.

8.1 Prove that $D+F=180^{\circ}$.
8.2 Deduce that $C \widehat{D} E=F$.

Question 9

9.1 Calculate the total surface area and the volume of the triangular prism shown below.

Exemplar Assessments Memorandum

Time: $\mathbf{1 , 5}$ hours

Term 2: Control Test

- This memorandum serves as a guide for the allocation of marks.
- Any acceptable / valid method can be used.
- Do not forget to mark with CA in mind. (Corrective Accuracy)
1.1.1

Difference:
Difference:

Next term is: $12 \checkmark$
1.1.2 $\quad 2 a=1$
$a=\frac{1}{2} \downarrow$
$3 a+b=2$
$3 \frac{1}{2}+b=2$

$$
b=\frac{1}{2} \checkmark
$$

$a+b+c=-2$
$\frac{1}{2}+\frac{1}{2}+c=-3$

$$
\begin{equation*}
c=-3 \checkmark \tag{3}
\end{equation*}
$$

1.1.3 $\mathrm{T}_{n}=\frac{1}{2} n^{2}+\frac{1}{2} n-3 \boldsymbol{J}$
$322=\frac{1}{2} n^{2}+\frac{1}{2} n-3 \checkmark$
$0=n^{2}+n-650 \checkmark$
$0=(n+26)(n-25) \checkmark$
$\therefore n=25$ J
1.2

Difference:
Difference:

$\therefore 2=x-4 \checkmark$
$6=x \checkmark$
2.1.1 $\quad A B=\sqrt{(4-2)^{2}+(5-1)^{2}}=\sqrt{20}$
$B C=\sqrt{(4)^{2}+(5-k)^{2}}=\sqrt{20} \checkmark$
$16+25-10 k+k^{2}=20 \Omega$
$k^{2}-10 k+21=0 \Omega$ $(k-7)(k-3)=0$
$k=7 \checkmark \ldots$ By inspection $k \neq 3$
2.1.2 $\quad m_{\mathrm{BC}}=\frac{7-5}{0-4} \checkmark=-\frac{1}{2} \checkmark$
2.1.3 $\quad m_{\mathrm{AB}}=\frac{5-1}{4-2}=2 \boldsymbol{\jmath}$
$m_{\mathrm{BC}} \times m_{\mathrm{AB}}=-1 \checkmark$
$\mathrm{BC} \perp \mathrm{AB} \boldsymbol{\downarrow}$
$\triangle A B C$ is a right-angled triangle.
2.1.4 Area of $\triangle \mathrm{ABC}=\frac{1}{2}(\mathrm{AB})(\mathrm{BC})=\frac{1}{2}(\sqrt{20})(\sqrt{20})=10$ square units \checkmark
2.2.1 $R(3 ; 2) \checkmark \checkmark$
2.2.2 $N(8 ; 2) \checkmark \checkmark$
2.2.3 ON: $y=\frac{1}{4} x \checkmark \checkmark$
2.2.4 $\tan \theta=\frac{1}{4}$

$$
\theta=14,04^{\circ} \checkmark
$$

$m_{\mathrm{OM}}=\frac{2}{3}$
$\tan \alpha=\frac{2}{3} \boldsymbol{\jmath}$
$\alpha=33,69^{\circ} \checkmark$
$\mathrm{MO} \mathrm{N}=19,65^{\circ} \checkmark$
2.2.5 $\mathrm{PM}=\sqrt{(-2-6)^{2}+(2-4)^{2}}=\sqrt{68} \boldsymbol{}$
$\mathrm{ON}=\sqrt{(8)^{2}+(2)^{2}} \boldsymbol{\checkmark}=\sqrt{68} \boldsymbol{\jmath}$
$\therefore \mathrm{PM}=\mathrm{ON} \boldsymbol{J}$
2.2.6 $\mathrm{Q}(2 ;-2) \checkmark \checkmark$ By inspection
3.1.1 \quad is when $x=0$ for f. B is when $x=0$ for g.
$\mathrm{A}(0 ; 3) \boldsymbol{\checkmark}$ and $\mathrm{B}(0 ;-1) \boldsymbol{\checkmark}$
3.1.2 $\mathrm{AB}=4$ units \checkmark
3.1.3 C and D are x-intercepts of f

At C and $D, 0=x^{2}-4 x+3 \boldsymbol{J}$
$(x-3)(x-1)=0, x=1$ or $x=3 \boldsymbol{J}$
$\therefore C(1 ; 0) \boldsymbol{\checkmark}$ and $\mathrm{D}(3 ; 0) \boldsymbol{\checkmark}$

Exemplar Assessments Memorandum

3.1 .4

$$
\begin{align*}
& x^{2}-5 x+4=0 \checkmark \\
& (x-4)(x-1)=0 \checkmark \\
& x=1 \text { or } x=4 \checkmark \tag{3}
\end{align*}
$$

3.1.5 At E: $x=-\frac{b}{2 a}=2 \boldsymbol{\checkmark}$ and $y=2^{2}-4(2)+3=-1 \boldsymbol{\checkmark}$ $\mathrm{E}(2 ;-1) \boldsymbol{\Omega}$
3.1 .6

$$
\begin{equation*}
x^{2}-4 x+3>x-1 \tag{3}
\end{equation*}
$$

$x^{2}-4 x-x+3+1>0$

$$
x^{2}-5 x+4>0
$$

$$
\begin{equation*}
(x-1)(x-4)>0 \quad \text { factorise } \tag{2}
\end{equation*}
$$

$x<1$ or $x>4 \checkmark$
3.1.7 $f(x)<0$ when $1 \checkmark<x<3 \boldsymbol{J}$
4.1.1 $f(-3)=8$
$\therefore 8=a^{-3} \jmath$
$2^{3}=a^{-3}$ or $\left(\frac{1}{2}\right)^{-3}=a^{-3}$
$a=\frac{1}{2} \quad \checkmark$
4.1.2 $\mathrm{P}(0 ; 1) \checkmark$ At $\mathrm{P}, x=0$
4.1.3 $\quad g(x)=-\left(\frac{1}{2}\right)^{x} \checkmark$
4.1.4 $f(x)=\left(\frac{1}{2}\right)^{x}+2 \checkmark$
5.1

6.1.1 $f(90)=-2$
$a \sin 90=-2$

$$
\begin{equation*}
a=-2 \boldsymbol{\checkmark} \tag{1}
\end{equation*}
$$

6.1.2 Amplitude of f is $2 \boldsymbol{\checkmark}$
6.1.3 Period of g is $360^{\circ} \checkmark$

Exemplar Assessments Memorandum

7.1

$$
\begin{array}{rlrl}
9 \sin x & =5 \cos ^{2} x+3 \sin ^{2} x & & \\
9 \sin x & =5\left(1-\sin ^{2} x\right)+3 \sin ^{2} x \checkmark & & \text { identity } \\
2 \sin ^{2} x+9 \sin x-5 & =0 \checkmark \checkmark & & \text { standard form } \\
(\sin x+5)(2 \sin x-1) & =0 \checkmark & & \text { factorise } \\
\sin x \neq-5 \text { or } \sin x=\frac{1}{2} \checkmark \checkmark & & \text { factors } \\
x=30^{\circ}+360^{\circ} k \text { or } x=150^{\circ}+360^{\circ} k, k \in \mathbb{Z} \checkmark \checkmark & & \tag{8}
\end{array}
$$

Exemplar Assessments Memorandum

Time: 1 hour

Term 3: Control Test 1

- This memorandum serves as a guide for the allocation of marks.
- Any acceptable / valid method can be used.
- Do not forget to mark with CA in mind. (Corrective Accuracy)
1.1.1 $48,08^{\circ}-38^{\circ}=10,08^{\circ}$ (ext. \angle of \triangle) $\checkmark \checkmark$
1.1.2 Using the sine rule: $\frac{A D}{\sin 38^{\circ}}=\frac{20}{\sin 10,08^{\circ}} \boldsymbol{V}$
$A D=\frac{20 \sin 38^{\circ}}{\sin 10,08^{\circ}} \checkmark$
$A D=70,35 \mathrm{~m} \mathbf{~}$
1.1.3 Using the cosine rule: $d^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{D} \boldsymbol{\checkmark}$

Now, $(A B)^{2}=(70,35)^{2}+(50)^{2}-2(70,35)(50) \cos 48,08^{\circ} \checkmark$
$A B=\sqrt{(70,35)^{2}+(50)^{2}-2(70,35)(50) \cos 48,08^{\circ}} \quad \checkmark$
$A B=52,43 \mathrm{~m} \boldsymbol{J}$
1.2 In $\triangle \mathrm{ACE}: \frac{\mathrm{AC}}{\sin (x+y)} \checkmark=\frac{\mathrm{CE}}{\sin \left(90^{\circ}-x\right)} \checkmark$
$\mathrm{AC}=\frac{\mathrm{CE} \cdot \sin (x+y)}{\operatorname{Cos} x} \boldsymbol{J}$
$\sin y=\frac{z}{\mathrm{CE}} \checkmark$
CE $=\frac{z}{\sin y}$,
$\mathrm{AC}=\frac{z \cdot \sin (x+y)}{\cos x \cdot \sin y} \quad$
2.1 Construction: Draw CD $\perp B A \boldsymbol{~}$

$$
\text { Proof: } \begin{aligned}
a^{2} & =\mathrm{BD}^{2}+h^{2} & \text { Pythagoras } \\
a^{2} & =(c-\mathrm{AD})^{2}+h^{2} \checkmark & \\
a^{2} & =c^{2}-2 c \cdot \mathrm{AD}+\mathrm{AD}^{2}+h^{2} & \\
a^{2} & =c^{2}-2 c \cdot \mathrm{AD}+b^{2} & \text { Pythagoras } \checkmark \\
a^{2} & =b^{2}+c^{2}-2 c \cdot \mathrm{AD} & \text { (1) } \boldsymbol{\checkmark}
\end{aligned}
$$

In $\triangle A D C: \frac{A D}{b}=\cos A$

$$
\begin{equation*}
\mathrm{AD}=b \cos \mathrm{~A} \tag{6}
\end{equation*}
$$

(2) in (1): $a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A} \checkmark$

Exemplar Assessments Memorandum

2.2.1 The length of the fence is the perimeter of the garden.

Perimeter of the garden $=K M+M S+S K \boldsymbol{J}$
We need to find MS and SK:
Using sine rule: $\frac{\mathrm{MS}}{\sin 20^{\circ}}=\frac{30}{\sin 60^{\circ}} \quad\left(\angle S=60^{\circ}\right.$, int. \angle s of $\left.\triangle\right)$

$$
\begin{aligned}
& M S=\frac{30 \sin 20^{\circ}}{\sin 60^{\circ}} \\
& M S=11,85 \mathrm{~m} \checkmark \\
& S K \\
& \frac{100^{\circ}}{}=\frac{30}{\sin 60^{\circ}} \\
& S K=\frac{30 \sin 100^{\circ}}{\sin 60^{\circ}} \\
& S K=34,11 \mathrm{~m}
\end{aligned}
$$

$$
\frac{S K}{\sin 100^{\circ}}=\frac{30}{\sin 60^{\circ}} \quad\left(\angle S=60^{\circ}, \text { int. } \angle S \text { of } \triangle\right)
$$

Now, the perimeter of the garden $=30+11,85+34,11 \boldsymbol{\checkmark}$
The perimeter of the garden $=75,96 \mathrm{~m} \boldsymbol{\checkmark}$
2.2.2 Using the area rule: Area $=\frac{1}{2} k s \sin M \checkmark$

Area $=\frac{1}{2}(11,85)(30) \sin 100^{\circ} \checkmark$
Mr Nu's garden is $175,05 \mathrm{~m}^{2} . \checkmark$
2.2.3 Perimeter of the garden $=$ Perimeter of a rectangle:

$$
\begin{align*}
P & =2 L+2 W \checkmark \\
75,96 \mathrm{~m} & =2 L+2(13) \\
2 L & =49,96 \mathrm{~m} \\
L & =24,98 \mathrm{~m} \tag{3}
\end{align*}
$$

Mr Nu's garden is $24,98 \mathrm{~m}$ in length. $\boldsymbol{\checkmark}$
3.1.1 Volume of sphere $=\frac{4}{3} \pi(3,5)^{3}=179,59438 \mathrm{~cm}^{3} \checkmark \checkmark$

Total surface area $=4 \pi(3,5)^{2}=153,93804 \mathrm{~cm}^{2} \checkmark \checkmark$
3.1.2 Volume of enlarged sphere $=179,59438 \times 2^{3}=1436,76 \mathrm{~cm}^{3} \checkmark$

Total surface area $=153,93804 \times 2^{2}=615,75 \mathrm{~cm}^{2} \boldsymbol{\checkmark}$
3.2.1 Volume $=\frac{1}{2}(15 \times 18) \times 14 \boldsymbol{J}=1890 \mathrm{~cm}^{3} \boldsymbol{\checkmark}$
3.2.2 The length of the hypotenuse $=\sqrt{15^{2}+18^{2}}=23,43$

Total surface area $=\frac{1}{2}(15 \times 18) \times 2+(23,43 \times 14)+(18 \times 14)+(15 \times 14) \checkmark \checkmark \checkmark$
Total surface area $=1060,02 \mathrm{~cm}^{2} \boldsymbol{\checkmark}$
3.3 $V=\pi r^{2} h$ making h the subject
$\frac{260}{\pi r^{2}}=\frac{\pi r^{2 h}}{\pi r^{2}} \quad \checkmark$
$h=\frac{260}{\pi r^{2}} \checkmark$
$h=\frac{260}{3,14(3,5) r}=\frac{260}{38,47} \checkmark=6,76 \mathrm{~cm} \boldsymbol{\checkmark}$

Exemplar Assessments Memorandum

Time: 1 hour

Term 3: Control Test 2

- This memorandum serves as a guide for the allocation of marks.
- Any acceptable / valid method can be used.
- Do not forget to mark with CA in mind. (Corrective Accuracy)
1.1.1 $x=\frac{(2 \times 10)+(5 \times 25)+(18 \times 35)+(22 \times 45)+(18 \times 55)+(13 \times 65)+(12 \times 75)+(10 \times 90)}{100}$

$$
\begin{equation*}
=\frac{5400}{100} \boldsymbol{\checkmark}=54 \% \checkmark \tag{3}
\end{equation*}
$$

1.1.2 $50 \leq x<60 \checkmark$
1.1.3 $40 \leq x<50 \checkmark$
1.2.1

Speed $(\mathrm{km} / \mathrm{h})$	Number of cars (frequency)	Cumulative frequency
$60 \leq x<70$	43	43
$70 \leq x<80$	69	112
$80 \leq x<90$	110	222
$90 \leq x<100$	49	271
$100 \leq x<110$	20	291
$110 \leq x<120$	9	300

1.2.2.

Speed of cars
$\checkmark \checkmark \checkmark \checkmark$

1.2.3 The median speed is shown at $84 \mathrm{~km} / \mathrm{h} \boldsymbol{\checkmark}$ at $Q_{2} \boldsymbol{\checkmark}$
1.2.4 $Q_{3}-Q_{1} \boldsymbol{\checkmark}=91-76 \boldsymbol{J}=15 \mathrm{~km} / \mathrm{h} \boldsymbol{J}$
2.1

| Stem | Leaf | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 14 | 5 | 7 | | | | | | |
| 15 | 7 | 9 | | | | | | |
| 16 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 6 |
| 17 | 1 | 2 | 2 | | | | | |
| 18 | 2 | 8 | | | | | | |

2.2.1 mean $=\frac{\sum f x}{n}=\frac{2801}{17}=164,76 \checkmark \mathbf{J}$
2.2.2 median $=164$ (data in the 9th position) $\checkmark \checkmark$
2.2.3 mode $=164$ (most common) $\boldsymbol{\checkmark} \boldsymbol{\checkmark}$
3.1

3.2 Bus: $32+x+38-x+B=110$

$$
B=40
$$

Train: $T+32+x+110-x=172$

$$
T=30 \checkmark
$$

Taxi: $x+110-x+60+38-x+60 \boldsymbol{J}$
All: $30+32+x+110-x+60+38-x+40=283$

$$
\begin{align*}
310-283 & =x \\
x & =27 \tag{6}
\end{align*}
$$

3.3 $P($ train and a bus $)=\frac{32+27}{283}=\frac{59}{283} \checkmark \checkmark$
3.4 $P($ bus but not a train $)=\frac{40+38-27}{283}=\frac{51}{283} \checkmark \checkmark$
$4.1 \quad P(B)=1-0,29$
$P(B)=0,71 \checkmark$
$P(A)=\frac{0,71}{3}=0,24 \checkmark$
$0,88=0,24+0,71-P(A$ and $B)$
$P(A$ and $B)=0,07 \quad \checkmark$
Events A and B are not mutually exclusive since $P(A$ and $B) \neq 0 \checkmark$

Exemplar Assessments Memorandum

4.2.1

4.2.2 $\quad P($ both green $)=\frac{7}{21} \times \frac{6}{20}=\frac{1}{10} \checkmark \checkmark$
4.2.3 $\quad P($ white and green $)=\frac{8}{21} \times \frac{7}{20}+\frac{7}{21} \times \frac{8}{20} \checkmark \checkmark=\frac{2}{15}+\frac{2}{15}=\frac{4}{15} \checkmark \checkmark$

Exemplar Assessments Memorandum

Time: 1 hour

Term 4: Control Test

- This memorandum serves as a guide for the allocation of marks.
- Any acceptable / valid method can be used.
- Do not forget to mark with CA in mind. (Corrective Accuracy)
1.1.1 Events A and B are not mutually exclusive since $P(A$ and $B) \neq 0$. $\checkmark \checkmark$
1.1.2 $P(A) \times P(B)=0,7 \times 0,3=0,21 \checkmark$
$P(A$ and $B)=0,2$
Events A and B are not independent since $P(A) \times P(B) \neq P(A$ and $B)$.
1.2.1

$2.1407+72+29+A+316+63=1053 \checkmark \checkmark$
$A=166$
$1053+B=1968$

$$
B=915 \checkmark
$$

$450+181+413+C+325+213=1968$

$$
\begin{equation*}
C=386 \checkmark \checkmark \tag{5}
\end{equation*}
$$

2.2 $P\left(\right.$ prefers netball and is a girl) $=\frac{\text { how many girls prefer netball }}{\text { number of learners }} \checkmark \checkmark$
$P($ prefers netball and is a girl $)=\frac{384}{1968} \approx 0,1951 \checkmark$
2.3 They are independent if and only if:
$P($ prefers netball and is a girl) $=P($ preferring netball $) \times P($ girl $) \checkmark \checkmark$
$\frac{384}{1968} \neq \frac{413}{1968} \times \frac{915}{1968}$
0,1951 $=0,09757$ 」
They are NOT independent.

Exemplar Assessments Memorandum

$3.1 \quad\left[10000(1+0,086)^{2}+4000\right](1+0,086)^{3} \checkmark=20229,28391$
$(20229,28391+3000)(1,086)^{3} \downarrow=R 29752,63 \checkmark$
3.29000 less $15 \%=7650 \checkmark$

7 650 (1 + 0,14×2) $\checkmark=R 9792 \checkmark$
$9792 \div 24=$ R408 monthly $\boldsymbol{\checkmark}$
$3.32200000(1-0,175)^{4} \boldsymbol{J}=$ R1 019 150,86 \boldsymbol{J}
$3.42200000(1+0,065)^{4} \boldsymbol{J}=$ R2 $830226 \boldsymbol{\downarrow}$
4.1.1 $\quad \mathrm{A}=\mathrm{P}\left(1+\frac{i}{m}\right)^{n m}$

$$
\begin{equation*}
A=8000\left(1+\frac{0,17}{12}\right)^{60} \checkmark \checkmark=R 18605,87 \checkmark \tag{3}
\end{equation*}
$$

4.1.2 $\quad 1+i_{\text {eff }}=\left(\frac{1+i_{\text {nom }}}{m}\right)^{m}$

$$
\begin{align*}
& i_{\text {eff }}=\left(\frac{1+i_{\text {nom }}}{m}\right)^{m}-1 \checkmark \\
& i_{\text {eff }}=18,38917282 \%=18,39 \% \checkmark \tag{2}
\end{align*}
$$

4.1.3 $\quad A=P(1+i)^{n}$
$A=8000(1+0,1838917282)^{5} \quad \checkmark=\mathrm{R} 18605,88$
The solutions are similar.
$4.2 \quad A=10000 \checkmark\left(1+\frac{0,084}{2}\right)^{8}\left(1+\frac{0,092}{12}\right)^{48} \checkmark=$ R20 051,76 \checkmark
The interest earned is R10 051,76 $\boldsymbol{\checkmark}$
4.3

$$
\begin{align*}
A & =P(1+i)^{n} \tag{4}\\
28000 & =15000(1+i)^{2 \times 5} \checkmark \\
\frac{28000}{15000} & =(1+i)^{10} \\
1+i & =\sqrt[10]{\frac{28000}{15000}} \\
i & =\sqrt[10]{\frac{2800}{15000}}-1=0,0644044 \\
\frac{r}{2 \times 100} & =0,0644044 \\
r & =0,0644044 \times 200 \\
r & =188 \%
\end{align*}
$$

Exemplar Assessments Memorandum

Time: 3 hours

Term 4: Final Examination Paper 1

- If a candidate answers a question TWICE, mark the FIRST attempt ONLY.
- Consistent accuracy applies in ALL aspects of the marking guideline.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
- The mark for substitution is awarded for substitution into the correct formula.
1.1.1 $x=0 \checkmark$ or $x=-\frac{1}{2} \checkmark$
1.1.2 $3 x^{2}-2 x-4=0 \checkmark$
$x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-4)}}{2(3)} \checkmark$
$x=-0,87 \quad$ or $x=1,54 \checkmark$
1.1.3

$$
\begin{align*}
\sqrt{x-1} & =x-1 \checkmark \tag{4}\\
x-1 & =x^{2}-2 x+1
\end{align*}
$$

$x^{2}-3 x+2=0 \checkmark$
$(x-1)(x-2)=0 \checkmark$
$x=1$ or $x=2 \downarrow$
check: both solutions
1.1.4 $x^{2}-3 x-10 \geq 0 \checkmark$
$(x+2)(x-5) \geq 0 \checkmark$
$x \leq-2 \checkmark$ or $x \geq 5 \checkmark$
1.1.5 $\quad 3^{x}\left(3^{3}-3^{2}\right)=486 \checkmark$

$$
\begin{align*}
3^{x}=\frac{486}{27-9} \checkmark & =27 \\
3^{x} & =3^{3} \downarrow \\
x & =3 \boldsymbol{l} \tag{4}
\end{align*}
$$

1.1.6 $\quad 2\left(2^{x}\right)^{2}-9 \cdot 2^{x}+4=0$

$$
\left(2^{x}-1\right)\left(2^{x}-4\right)=0 \checkmark
$$

$2^{x}=\frac{1}{2}$ or $2^{x}=4 \checkmark$
$2^{x}=2^{-1}$ or $2^{x}=2^{2} \sqrt{ }$
$x=-1 \boldsymbol{\checkmark}$ or $x=2 \boldsymbol{\downarrow}$
$1.2 \quad 2 x-7=y$ J
$x^{2}+x(2 x-7)+(2 x-7)^{2}=21 \checkmark$
$x^{2}+2 x^{2}-7 x+4 x^{2}-28 x+49-21=0 \checkmark$ $7 x^{2}-35 x+28=0$
$x^{2}-5 x+4=0 \checkmark$
$(x-4)(x-1)=0$
$x=4$ or $x=1 \checkmark$
$y=1$ or $y=-5 \checkmark$

Exemplar Assessments Memorandum

1.3.1 $\Delta=0$ for equal roots
$\Delta=2 p+5$
$0=2 p+5 \checkmark$
$p=-\frac{5}{2}$
1.3.2 $\Delta<0$ for non real roots
$2 p+5<0$

$$
\begin{equation*}
p<-\frac{5}{2} \tag{1}
\end{equation*}
$$

2.1.1 $\quad\left(\frac{27 x^{7}}{x}\right)^{\frac{2}{3}}=\left(\frac{3^{3} x^{7}}{x}\right)^{\frac{2}{3}} \boldsymbol{\checkmark}=3^{3 \times \frac{2}{3}} x^{6 \times \frac{2}{3}} \boldsymbol{J}=3^{2} x^{4}=9 x^{4} \boldsymbol{\jmath}$
2.1.2 $\quad \frac{\sqrt{48}-\sqrt{32}}{\sqrt{12}-\sqrt{8}}=\frac{4 \sqrt{3}-4 \sqrt{2}}{2 \sqrt{3}-2 \sqrt{2}} \checkmark \boldsymbol{J}=\frac{4(\sqrt{3}-\sqrt{2})}{2(\sqrt{3}-\sqrt{2})} \boldsymbol{\checkmark} \boldsymbol{\checkmark}=2 \boldsymbol{\checkmark}$
$2.2 \sqrt{10002^{2}-10000 \times 10004}$
Let $x=10000: \sqrt{(x+2)^{2}-x(x+4)} \boldsymbol{J}$

$$
\begin{equation*}
=\sqrt{x^{2}+4 x+4-x^{2}-4 x} \boldsymbol{\checkmark}=\sqrt{4} \boldsymbol{\Omega}=2 \boldsymbol{\checkmark} \tag{4}
\end{equation*}
$$

3.1.1 $T_{n}=11 n \checkmark+31 \checkmark$
3.1.2 $\quad T_{10}=110+31 \boldsymbol{J}=141$
3.1.3 $11 n+31=702 \boldsymbol{J}$

$$
\begin{equation*}
n=61 \checkmark \tag{2}
\end{equation*}
$$

3.2.1 $\frac{16}{15}, \frac{19}{18} \checkmark \checkmark$
3.2.2 $\quad T_{n}=\frac{3 n+1}{3 n} \checkmark \checkmark$
4.1.1 $13-17=-4 ; 9-13=-4$

Difference is -4
$T_{4}=9-4=5 \checkmark$
4.1.2 $\quad T_{n}=a+(n-1) d$
$T_{n}=17+(n-1)(-4) \checkmark$
$T_{n}=17-4 n+4=-4 n+21 \checkmark$
4.1.3
$T_{n}=21-4 n$
$-83=21-4 n \checkmark$
$-104=-4 n \boldsymbol{V}$
$n=26$ The term will be the 26th term
4.1.4 $Q_{470}-Q_{469}$
T_{469} of linear sequence \checkmark
21 - 4(469) \checkmark
$21-1876=1855 \checkmark$
$4.2 \quad 2 a=2$

$$
\begin{aligned}
a & =1 \checkmark \\
T_{5} & =29 \\
1(5)^{2}+5 b+c & =29 \\
25+5 b+c & =29 \\
5 b+c & =4
\end{aligned}
$$

and $\mathrm{T}_{17}=29$
$1(17)+17 b+c=2+9 \checkmark$
$289+17 b+c=29$
$17 b+c=-260$
$c=4-5 b \checkmark$
$17 b+(4-5 b)=-260 \checkmark$

$$
\begin{aligned}
12 b & =-264 \\
b & =-22
\end{aligned}
$$

$c=4-5 b$
$c=114 \checkmark$
$\mathrm{T}_{n}=n^{2}-22 n+114 \boldsymbol{J}$
$5.1-4=a(1-3)(1+1) \checkmark$
$4=-4 a$
$a=1 \checkmark$
$5.20=x^{2}-2 x-3-(-x-5)$
$0=x^{2}-x+2 \checkmark$
$\Delta=b^{2}-4 a c$ with $a=1, b=-1$ and $c=2$
$\Delta=(-1)^{2}-4(1)(2)=-7 \boldsymbol{J}$
The roots are imaginary $(\Delta<0) . \checkmark$
This confirms that the two graphs do not intersect.
$5.3 f\left(-\frac{1}{2}\right)=\frac{1}{2}-5=-4 \frac{1}{2}$,
$g\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{2}-2\left(-\frac{1}{2}\right)-3 \boldsymbol{J}=-1 \frac{3}{4} \boldsymbol{\checkmark}$
FG $=-1 \frac{3}{4}-\left(-4 \frac{1}{2}\right) \checkmark=2 \frac{3}{4}$ units \checkmark
$5.4 f(x)=0$ when $x=-5, \mathrm{E}=(-5 ; 0) \boldsymbol{J}$
$g(x)=0$ when $x=3$ (at B) or $x=-1$ (at A) $\boldsymbol{\checkmark}$
$\mathrm{EB}=8$ units $\boldsymbol{\checkmark}$
5.5 $g(x)$ is decreasing for $x<1 \checkmark$

Exemplar Assessments Memorandum

6.1 $p=2 \boldsymbol{\checkmark}$ and $q=-1 \checkmark$
$f(x)=\frac{k}{x+2}-1$
Substitute $\mathrm{B}(0 ;-3): \boldsymbol{\checkmark}-3=\frac{k}{0+2}-1 \boldsymbol{\checkmark}$

$$
\begin{equation*}
k=-4 \boldsymbol{J} \tag{5}
\end{equation*}
$$

$6.2 \quad x=-2 \boldsymbol{\checkmark}$ and $y=-1 \boldsymbol{\downarrow}$
6.3 The gradient of the axis of symmetry is $m=\frac{-3+1}{0+2}=-1$ using points ($-2 ;-1$) and ($0 ;-3$).
The gradient of the axis of symmetry $g(x)$ is $-1 \checkmark$
$c=-3$, the y-intercept $\boldsymbol{\checkmark}$
$g(x)=-x-3$
$6.4 y=x+c$ passes through $(-2 ;-1) \checkmark$
$-1=-2+c$ gives $c=1 \boldsymbol{\checkmark}$
Axis of symmetry is $y=x+1$
6.5 $\mathrm{C}=(-4 ;-1)$ and $\mathrm{B}=(0 ;-3)$
$\mathrm{CB}^{2}=4^{2}+4^{2}=32 \boldsymbol{\checkmark} \quad$ Pythagoras' Theorem
$\mathrm{CB}=\sqrt{32} \boldsymbol{\checkmark}=4 \sqrt{2} \boldsymbol{\jmath}$
By inspection: The coordinates of C are $(-4 ; 1) \checkmark$
Alternatively: At C: $-\frac{4}{x+2}-1=-x-3$

$$
\begin{aligned}
4-(x+2) & =(-x-3)(x+2) \\
4-x-2 & =-x^{2}-5 x-6 \\
x^{2}+4 x & =0 \\
x(x+4) & =0
\end{aligned}
$$

$x=0$ or $x=-4$
At C, $x=-4$ gives $y=1$
$C B=\sqrt{(-4-0)^{2}+(1+3)^{2}}=\sqrt{32}$
$C B=4 \sqrt{2}$
7.1

$$
\begin{equation*}
\checkmark \checkmark g(x) \checkmark \checkmark \checkmark f(x) \tag{5}
\end{equation*}
$$

7.2.2 $-f(x)=3^{x+1}-1 \checkmark$

$$
\begin{equation*}
y>-1 \checkmark \checkmark \tag{3}
\end{equation*}
$$

7.2.3 Reflection of $g(x)$ in the y-axis is $h(x)=3^{-x}$ or $h(x)=\left(\frac{1}{3}\right)^{x} \checkmark \checkmark$
$8.1 \quad A=140000 \checkmark(1-0,14 \times 4) \boldsymbol{J}=R 61600 \boldsymbol{J}$
$8.2 \quad A=10000 \checkmark\left(1+\frac{0,084}{2}\right)^{8} \checkmark\left(1+\frac{0,084}{12}\right)^{48} \checkmark$
$=$ R20 051,76, so interest earned is R10 051,76 \checkmark
8.3.1 $\left(1+\frac{0,085}{12}\right)^{12} \checkmark=1,08839 \checkmark$

Effective interest rate $=8,839 \%=8,84 \% \checkmark$
8.3.2 $14500(1+0,08839)^{3} \checkmark=R 18694,83 \checkmark$
$(18694,83-5000) \checkmark\left(1+\frac{0,078}{4}\right)^{8} \checkmark=$ R15 982,87 \checkmark

Exemplar Assessments Memorandum

9.1 Let the number of learners who do all sports be x.

$$
\begin{align*}
7+x+15-x+13+x+13-x+x+14-x+11-x+7 & =75 \\
80-x & =75 \tag{6}
\end{align*}
$$

$x=5$, five learners did all the sports.
9.2 If $x=5$ and for Soccer only $(7+x)=12$ learners $\boldsymbol{\checkmark} \boldsymbol{J}$
9.3.1 $\quad P(N)=\frac{18}{75}=\frac{6}{25} \checkmark \checkmark$
9.3.2 $\quad P(N / S)=\frac{15}{35}=\frac{3}{7}$ (using soccer as a sample space) $\checkmark \checkmark$
9.3.3 $\quad P($ not $V)=1-P(V)=1-\frac{28}{75}=\frac{47}{75} \checkmark \checkmark$
10.1 $P(A$ and $B)=P(A)+P(B)-P(A$ or $B)$
$P(A$ and $B)=\frac{2}{3}+\frac{2}{5}-\frac{4}{5} J$
$P(A$ and $B)=\frac{4}{15} J$
10.2

$P($ both white $)=\frac{7}{21} \times \frac{6}{20}=\frac{1}{10} \checkmark \checkmark$

Exemplar Assessments Memorandum

Time: 3 hours

Term 4: Final Examination Paper 2

- If a candidate answers a question TWICE, mark the FIRST attempt ONLY.
- Consistent accuracy applies in ALL aspects of the marking guideline.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
- The mark for substitution is awarded for substitution into the correct formula.
1.1 Range $=75-5=70 \checkmark$
1.2 \quad Standard deviation $=19,56 \boldsymbol{\checkmark}$
1.3 Median = 25 J
1.4 $Q_{1}=\frac{8+15}{2}=11,5$ J
$Q_{2}=\frac{31+36}{2}=33,5 \checkmark$
$I Q R=Q_{3}-Q_{1}=33,5-11,5=22 \checkmark$
1.5

$\checkmark \checkmark$
1.6 Skewed to the right/Positively skewed $\boldsymbol{\checkmark}$
1.7 Outlier $=75$ J
2.1

Mass (kg)	Frequency	Cumulative Frequency
$60 \leq x<70$	1	1
$70 \leq x<80$	6	7
$80 \leq x<90$	11	18
$90 \leq x<100$	9	27
$100 \leq x<110$	3	30

\checkmark for Frequency
\checkmark for Cumulative frequency

Exemplar Assessments Memorandum

2.2

(2)
2.3 Mean mass $=\frac{2595}{30} \boldsymbol{J}=86 \frac{1}{2} \mathrm{~kg} \checkmark$
2.4 Standard deviation $=8,51$
$\bar{x}-1$ standard deviation $=77,99 \mathrm{~kg}$ and
$\bar{x}+1$ standard deviation $=95,01 \mathrm{~kg} \checkmark$
21 rugby players have a mass within 1 standard deviation of the mean. $\boldsymbol{\checkmark}$
3.1.1 $m_{\mathrm{DF}}=-\frac{3-2}{-5+1}=\frac{5}{4} \checkmark \checkmark$
$m_{\mathrm{DE}}=-\frac{2-2}{4+1}=-\frac{4}{5} \boldsymbol{J}$
3.1.2 $m_{\mathrm{DF}} \times m_{\mathrm{DE}}=\frac{5}{4} \times \frac{-4}{5}=-1 \checkmark \checkmark$
$D E$ and $D F$ are perpendicular to each other.
3.1.3 DE: $y=-\frac{4}{5} x+c \checkmark$

Substitute a point on $D E$ to find c :
$(-1 ; 2)=-\frac{4}{5}(-1)+c \sqrt{ }$, gives $c=\frac{6}{5}$
DE: $y=-\frac{4}{5} x+\frac{6}{5}$
3.1.4 Substitute $x=6$ into $D E$ to find y.
$y=\left(-\frac{4}{5}\right) 6+\frac{6}{5} \checkmark=-\frac{18}{5} \checkmark$
3.1.5 $\quad \mathrm{DF}=\sqrt{(-1+5)^{2}+(2+3)^{2}}=\sqrt{41} \checkmark \checkmark$
$D E=\sqrt{(-1-4)^{2}+(2+2)^{2}}=\sqrt{41} \checkmark \checkmark$
3.1.6 Area $\triangle \mathrm{DEF}=\frac{1}{2}(\sqrt{41} \times \sqrt{41}) \boldsymbol{J}=20,5$ units $^{2} \boldsymbol{\checkmark}$
3.2.1 RS: $\sqrt{(x-10)^{2}+(-9-3)^{2}}=15 \checkmark$

$$
\begin{align*}
x^{2}+20 x+100+144 & =225 \checkmark \\
x^{2}-20 x+19 & =0 \checkmark \\
(x-19)(x-1) & =0 \checkmark \tag{5}
\end{align*}
$$

$x=1, x \neq 19$ from sketch \checkmark
3.2.2 $\mathrm{T}=\left(\frac{10+1}{2} ; \frac{3-9}{2}\right)=\left(\frac{11}{2} ;-3\right) \checkmark \checkmark$
3.2.3 $\quad m_{\text {PT }}=\frac{-3-1}{\frac{11}{2}-(-4)}=-\frac{8}{19} \checkmark \checkmark$
3.2.4 $\quad m_{\text {RS }}=\frac{3-(-9)}{10-1}=\frac{12}{9}=\frac{4}{3} \checkmark$
$m_{\mathrm{QR}}=-\frac{3}{4} \boldsymbol{J}\left(m_{\mathrm{RS}} \times m_{\mathrm{QR}}=-1\right)$
$\frac{y-(-9)}{-7-1}=-\frac{3}{4}, ~$
$\frac{y+9}{-8}=-\frac{3}{4}$ and $y=-3 \boldsymbol{J}$
3.2.5 $\quad m_{\mathrm{QR}}=-\frac{3}{4}$ and $m_{\mathrm{PT}}=-\frac{8}{19} \checkmark$

QR is not parallel to PT. (Gradients are not equal) \checkmark
4.1.1 $\frac{\sin \left(180^{\circ}-80^{\circ}\right) \cdot \tan ^{2}\left(180^{\circ}+45^{\circ}\right)}{\tan 30^{\circ} \cdot \cos 10^{\circ} \cdot \sin \left(180^{\circ}-60^{\circ}\right)}$

$$
\begin{align*}
& =\frac{\sin 80^{\circ} \cdot \tan ^{2} 45^{\circ}}{\tan 30^{\circ} \cdot \cos 10^{\circ} \cdot \sin 60^{\circ}} \\
& =\frac{\cos 10^{\circ} \cdot(1)^{2}}{\left(\frac{1}{\sqrt{3}}\right) \cdot \cos 10^{\circ} \cdot\left(\frac{\sqrt{3}}{2}\right)}=\frac{1}{\frac{1}{2}}=2 \mathrm{l} \tag{6}
\end{align*}
$$

4.1.2 $\frac{\cos x \cdot \sin ^{2} x}{(-\cos x) \cdot(-\sin x) \cdot\left(\frac{\sin x}{\cos x}\right) \cdot \cos x}=1 \boldsymbol{\downarrow}$
4.2.1 $\cos 58^{\circ}=\sin \left(90^{\circ}-58^{\circ}\right)=\sin 32^{\circ}=k \checkmark$
4.2.2 $\sin 212^{\circ}=\sin \left(180^{\circ}+32^{\circ}\right)=-\sin 32^{\circ}=-k \checkmark$
4.2.3

$x^{2}=1^{2}-k^{2}$
Pythagoras Theorem
$x=\sqrt{1-k^{2}}$
$\tan 32^{\circ}=\frac{k}{\sqrt{1-k^{2}}} \boldsymbol{\checkmark}$

Exemplar Assessments Memorandum

$4.3 \quad \mathrm{RHS}=\left(\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}\right)^{2}=\left(\frac{1-\sin \theta}{\cos \theta}\right)\left(\frac{1-\sin \theta}{\cos \theta}\right) \checkmark$

$$
\begin{equation*}
=\frac{(1-\sin \theta)(1-\sin \theta)}{\cos ^{2} \theta}=\frac{(1-\sin \theta)(1-\sin \theta)}{1-\sin ^{2} \theta} \boldsymbol{J}=\frac{(1-\sin \theta)(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)} \checkmark=\frac{1-\sin \theta}{1+\sin \theta} \checkmark=\text { LHS } \tag{4}
\end{equation*}
$$

LHS $=\frac{\cos x}{1+\sin x}+\tan x$

$$
\begin{align*}
& =\frac{\cos x}{1+\sin x}+\frac{\sin x}{\cos x} \boldsymbol{\operatorname { c o s }} \\
& =\frac{\cos ^{2} x+\sin x(1+\sin x)}{\cos x(1+\sin x)} \boldsymbol{J}=\frac{\cos ^{2} x+\sin x+\sin ^{2} x}{\cos x(1+\sin x)} \boldsymbol{\checkmark}=\frac{1+\sin x}{\cos x(1+\sin x)} \boldsymbol{\checkmark}=\frac{1}{\cos x}=\text { RHS } \tag{5}
\end{align*}
$$

4.4 Identity undefined if $\cos x=0 \boldsymbol{\checkmark}$

Reference angle $=90^{\circ}$
Quadrant 1: $x=90^{\circ}+360 k \checkmark$
Quadrant 2: $x=270^{\circ}+360 k, k \in \mathbb{Z} \boldsymbol{J}$
$4.5 \sin \left(x+10^{\circ}\right)=\cos \left(x-30^{\circ}\right)=\sin \left[90^{\circ}-\left(x-30^{\circ}\right)\right]=\sin \left(120^{\circ}-x\right)$
Quadrant 1: $\left(x+10^{\circ}\right)=\left(120^{\circ}-x\right)+360^{\circ} k, k \in \mathbb{Z}$

$$
\begin{aligned}
2 x & =110^{\circ}+360^{\circ} k, k \in \mathbb{Z} \\
x & =55^{\circ}+180^{\circ} k, k \in \mathbb{Z}
\end{aligned}
$$

Quadrant 2: $\left(x+10^{\circ}\right)=180^{\circ}-\left(120^{\circ}-x\right)+360^{\circ} k, k \in \mathbb{Z}$
$x+10^{\circ}=60^{\circ}+x$ No solution
Final solution: $x=-125^{\circ} ; 55^{\circ}$
$5.1 \quad f(90)=a \sin \left(90^{\circ}\right)=2$ and $g\left(360^{\circ}\right)=0$

$$
\begin{equation*}
a=2 \checkmark \text { and } b=\frac{1}{2} \checkmark \tag{2}
\end{equation*}
$$

5.2 $\mathrm{P}\left(120^{\circ} ; \sqrt{3}\right) \checkmark$ and $\mathrm{Q}\left(240^{\circ} ;-\sqrt{3}\right)$
$5.3 \quad 120^{\circ} \leq x<180^{\circ} \checkmark \checkmark$ and $240^{\circ} \leq x \leq 360^{\circ} \checkmark \checkmark$
$5.4 \quad x=180^{\circ} \checkmark$
$6.1 \quad \frac{C D}{\sin 80^{\circ}}=\frac{52}{\sin 60^{\circ}} \checkmark$
$C D=\frac{52 \sin 80^{\circ}}{\sin 60^{\circ}} \checkmark=59,13 \mathrm{~m} \checkmark$
6.2 $\quad A D^{2}=74^{2}+52^{2}-2(74)(52) \cos 36^{\circ} \checkmark \checkmark$

$$
\begin{equation*}
\mathrm{AD}=\sqrt{1953,805 \ldots} \quad \checkmark=44,20 \mathrm{~m} \tag{3}
\end{equation*}
$$

6.3 $B \widehat{D C}=40^{\circ} \checkmark$
(sum of angles in $\triangle B D C$) \downarrow

$$
\begin{align*}
\text { Area of } \mathrm{ABCD} & =\left(\frac{1}{2}\right) 74 \times 52 \times \sin 36^{\circ} \checkmark+\left(\frac{1}{2}\right) 59,13 \times 52 \times \sin 40^{\circ} \checkmark \\
& =2119,11 \mathrm{~m}^{2} \checkmark \tag{5}
\end{align*}
$$

7.1

(Note: Instead of Prove you may write RTP, which means "required to prove".)
Prove: PM=MQ (Radii)
Construction: Draw radii OP and OQ. \downarrow
Proof: In $\triangle O P M$ and $\triangle O Q M$: $O P=O Q \quad$ (Given $O M \perp P Q$)

OM is common.
$O \widehat{M P}=90^{\circ}=O \widehat{M} Q$
$\triangle O P M \equiv \triangle O Q M \checkmark$
$P M=M Q \quad \checkmark$ (RHS (right angle, hypotenuse, side)
$(\equiv \triangle \mathrm{s}) \boldsymbol{\downarrow}$
$A B=10 \mathrm{~cm}$
$\mathrm{AD}=\mathrm{DB}=5 \mathrm{~cm} \boldsymbol{\checkmark}$
$O A=13 \mathrm{~cm}$
OD $=12 \mathrm{~cm} \boldsymbol{\checkmark}$
$\therefore \mathrm{DC}=1 \mathrm{~cm} \boldsymbol{\checkmark}$
$\mathrm{A} \widehat{\mathrm{C}}=90^{\circ}$
Let $\mathrm{B} \widehat{\mathrm{C}} \mathrm{P}=x$
$\mathrm{BA} \mathrm{P}=x \checkmark$
$\mathrm{A} \widehat{\mathrm{B} O}=x \checkmark$
and $\mathrm{DC} \mathrm{C} \mathrm{B}=x \checkmark$
$\therefore \mathrm{D} \widehat{\mathrm{A}}=x \checkmark$
$\mathrm{P} \widehat{\mathrm{A} C}=x \checkmark$
8.1 RTP: $\widehat{D}+\hat{F}=180^{\circ}$

Construction: Draw radii EO and OG.
Proof: Let reflex EOGG $=2 x \checkmark$
$\mathrm{G} \widehat{\mathrm{D}}=x \checkmark \quad \angle$ at centre $=2(\angle$ at circumference $)$
$\mathrm{EOG}=360^{\circ}-2 x \checkmark$
$\hat{F}=180^{\circ}-x \checkmark$
$\mathrm{G} \widehat{\mathrm{D}}+\mathrm{F}=x+180^{\circ}-x$
$\therefore \widehat{D}+\hat{F}=180^{\circ} \checkmark$

Given
$O C \perp A B \checkmark$
Given
Pythagoras' Theorem in \triangle OAD \checkmark
OC $=13 \mathrm{~cm}=$ OA radii $\boldsymbol{\checkmark}$
(6)
$\angle \mathrm{s}$ in semi-circle
\angle at centre $=2(\angle$ at circumference $) \checkmark$
\angle s subtended by BP ($\angle \mathrm{s}$ in same seg)
Radii OA $=\mathrm{OB} ; \angle \mathrm{s}$ opp equal sides
Chord BC bisects D $\mathrm{C} P \mathfrak{J}$
Exterior \angle cyclic quadrilateral ABCD
\angle s sum of $\triangle P A C$

Angles around a point
\angle at centre $=2(\angle$ at circumference $)$

Exemplar Assessments Memorandum

8.2
$G \widehat{D} E=x$

Proved above

$\mathrm{C} \widehat{\mathrm{D}}=180^{\circ}-x \checkmark$
$\hat{F}=180^{\circ}-x \checkmark$
$\therefore \mathrm{CDE}=\hat{\mathrm{F}}$

> CDG straight line $(\angle$ s on str line) \checkmark
> Both equal $\left(180^{\circ}-x\right)$ (opp \angle s of cyclic quad) \checkmark
> Both equal $\left(180^{\circ}-x\right) \checkmark$
9.1 Use Pythagoras' Theorem to calculate the missing length:

$$
5^{2}+5^{2}=s^{2}
$$

$$
s=\sqrt{50}=7,07 \mathrm{~cm} \checkmark
$$

$$
\text { TSA }=2\left(\frac{1}{2}\right)(10 \times 5)+(10 \times 20)+2(7,07 \times 20) \boldsymbol{J}=532,8 \mathrm{~cm}^{2} \boldsymbol{\checkmark}
$$

Volume $=$ area of cross-section \times length \checkmark
Volume $=\frac{1}{2}(10 \times 5)(20) \boldsymbol{\checkmark}=500 \mathrm{~cm}^{3} \boldsymbol{\checkmark}$

Pearson South Africa

At Pearson, home of Maskew Miller Longman and Heinemann, we're here to help people make progress in their lives through learning.

We work with teachers and learners to create and continually improve our wide range of products and services. We create content in all 11 official languages for learners from pre-school to Grade 12. Whether it's our trusted CAPS-approved textbooks, digital and supplementary resources, or professional development courses, we put the learner at the heart of everything we do.

Every day all over South Africa, our products and services help learning flourish - because wherever learning flourishes, so do people.

Also available:

Browse and purchase Pearson eBooks at shop.pearson.co.za

Contact us

T: 0215326008
E: pearsonza.enquiries@pearson.com
Online Teacher Support
www.classroomsolutions.co.za
Learn more at za.pearson.com

[^0]: ${ }^{* * 1}$ No important aspect in Mathematics curriculum is compromised.
 ${ }^{* * 2}$ The amended School Based Assessment (SBA) is aligned to the content and time available. Informal tasks and activities should be used as assessment for learning, to prepare for formal assessment.

[^1]: *3 Euclidean Geometry has been moved from Term 3 to Term 1
 *4 Formal proofs are required in this section.

[^2]: 7 Number Patterns has been moved from Term 1 to Term 2.
 *8 Platinum textbook has separated Functions (Hyperbola, Parabola and Exponential) and Trigonometric functions into 2 topics

[^3]: 11 Statistics has been moved from Term 4 to Term 3.

[^4]: ${ }^{13}$ Moved from Term 3 to Term 4

